直角三角形的边角关系-单元测试(有答案)_第1页
直角三角形的边角关系-单元测试(有答案)_第2页
直角三角形的边角关系-单元测试(有答案)_第3页
直角三角形的边角关系-单元测试(有答案)_第4页
直角三角形的边角关系-单元测试(有答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直角三角形的边角关系-单元测试(有答案)一、选择题1.计算:cos245°+sin245°=()A. B.1 C. D.2.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍 B.都缩小两倍 C.不变 D.都扩大四倍3.如图,在Rt△ABC中,∠C=Rt∠,a、b、c分别是∠A,∠B,∠C的对边,下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.tanB=4.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A. B.﹣1 C.2﹣ D.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.6.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.7.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.2m C.4m D.m8.如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A. B.2 C. D.9.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B. C.7 D.10.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m二、填空题11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).13.小兰想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么塔高约为m.(小兰身高忽略不计,取)14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于.15.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=.16.如图,△ABC的顶点都在方格纸的格点上,则sinA=.17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).18.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=9,则AB=.三、解答题19.计算下列各题:(1)(2cos45°﹣sin60°)+;(2)(﹣2)0﹣3tan30°+|﹣2|.20.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;(3)量出A,B两点间的距离为4.5米.请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)21.每年的5月15日是”世界助残日”,我区时代超市门前的台阶共高出地面1.2米,为帮助残疾人,便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过9°,已知此商场门前的人行道距门前垂直距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据:sin9°=0.1564,cos9°=0.9877,tan9°=0.1584)22.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)23.已知:如图,在山脚的A处测得山顶D的仰角为45°,沿着坡度为30°的斜角前进400米处到B处(即∠BAC=30°,AB=400米),测得D的仰角为60°,求山的高度CD.24.一段路基的横断面是直角梯形,如图1,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图2的技术要求.试求出改造后坡面的坡度是多少?25.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.26.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船c的求救信号.已知A、B两船相距100(+3)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处200海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)参考答案与试题解析1.计算:cos245°+sin245°=()A. B.1 C. D.【解答】解:∵cos45°=sin45°=,∴cos245°+sin245°===1.故选B.2.在Rt△ABC中,各边的长度都扩大两倍,那么锐角A的各三角函数值()A.都扩大两倍 B.都缩小两倍 C.不变 D.都扩大四倍【解答】解:∵各边的长度都扩大两倍,∴扩大后的三角形与Rt△ABC相似,∴锐角A的各三角函数值都不变.故选C.3.如图,在Rt△ABC中,∠C=Rt∠,a、b、c分别是∠A,∠B,∠C的对边,下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.tanB=【解答】解:A、在Rt△ABC中,∠C=90°,sinA=,csinA=a,正确;B、在Rt△ABC中,∠C=90°,cosB=,本项错误;C、在Rt△ABC中,∠C=90°,tanA=,btanA=a,本项错误;D、在Rt△ABC中,∠C=90°,tanB=,本项错误,故选A.4.如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A. B.﹣1 C.2﹣ D.【解答】解:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠C=45°,BC=AC.又∵点D为边AC的中点,∴AD=DC=AC.∵DE⊥BC于点E,∴∠CDE=∠C=45°,∴DE=EC=DC=AC.∴tan∠DBC===.故选A.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选D.6.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.【解答】解:解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,∴sinA=,tanB=和a2+b2=c2.∵sinA=,设a=3x,则c=5x,结合a2+b2=c2得b=4x.∴tanB=.解法2:利用同角、互为余角的三角函数关系式求解.∵A、B互为余角,∴cosB=sin(90°﹣B)=sinA=.又∵sin2B+cos2B=1,∴sinB==,∴tanB===.故选A.7.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B.2m C.4m D.m【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选B.8.如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A. B.2 C. D.【解答】解:设菱形ABCD边长为t.∵BE=2,∴AE=t﹣2.∵cosA=,∴.∴=.∴t=5.∴AE=5﹣2=3.∴DE==4.∴tan∠DBE===2.故选B.9.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B. C.7 D.【解答】解:设直角三角形一直角边为x,则另一直角边为7﹣x,根据题意得x(7﹣x)=6,解得x=3或x=4,所以斜边长为.故选A.10.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为()A.1200m B.1200m C.1200m D.2400m【解答】解:∵∠ABC=∠α=30°,∴AB===2400(m),即飞机A与指挥台B的距离为2400m.故选D.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行10米.【解答】解:如图,设大树高为AB=12m,小树高为CD=6m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=6m,EC=8m,AE=AB﹣EB=12﹣6=6(m),在Rt△AEC中,AC==10(m).故小鸟至少飞行10m.故答案为:10.12.如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).【解答】解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.13.小兰想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处,测得仰角为60°,那么塔高约为43.3m.(小兰身高忽略不计,取)【解答】解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=50m.∴DC=BD•sin60°=50×=43.3.故答案为:43.3.14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于15°或75°..【解答】解;如图1,△ABC中,AB=AC=2,BD为腰上的高,且BD=1,顶角为锐角,∵AD2=AB2﹣BD2,∴AD2=4﹣1=3,∴AD=,∴∠ABD=60°,∴顶角为30°,底角为75°;如图2,△ABC中,AB=AC=2,BD为腰上的高,且BD=1,顶角为钝角同理可得,底角为15°.故答案为:15°或75°.15.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=,则AC=5.【解答】解:∵在Rt△ABC中,cosB=,∴sinB=,tanB==.∵在Rt△ABD中AD=4,∴AB=.在Rt△ABC中,∵tanB=,∴AC=×=5.16.如图,△ABC的顶点都在方格纸的格点上,则sinA=.【解答】解:在直角△ABD中,BD=1,AB=2,则AD===,则sinA===.故答案是:.17.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为14.1cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).【解答】解:如图2,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°,在Rt△CBE中,cos∠CBE=,∴BE=BC•cos∠CBE=15×0.940=14.1cm.故答案为:14.1.18.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=9,则AB=8.【解答】解:过点D作DE⊥AB于点E,CF⊥DE于F,则有四边形BCFE为矩形,BC=EF,BE=CF,∵∠A=60°,∴∠ADE=30°,∵∠D=90°,∴∠CDE=60°,∠DCF=30°,在△CDF中,∵CD=9,∴CF=CD=,CF=CD=,∵EF=BC=6,∴DE=EF+DF=6+=,则AE==,∴AB=AE+BE=+=8.故答案为:8.19.计算下列各题:(1)(2cos45°﹣sin60°)+;(2)(﹣2)0﹣3tan30°+|﹣2|.【解答】解:(1)原式=×(2×﹣)+=2﹣+=2;(2)原式=1﹣3×+2﹣=3﹣2.20.在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;(3)量出A,B两点间的距离为4.5米.请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【解答】解:设CD=x米;∵∠DBC=45°,∴DB=CD=x,AD=x+4.5;在Rt△ACD中,tan∠A=,∴tan35°=;解得:x=10.5;所以大树的高为10.5米.解法2:在Rt△ACD中,tan∠A=,∴AD=;在Rt△BCD中,tan∠CBD=,∴BD=;而AD﹣BD=4.5,即﹣=4.5,解得:CD=10.5;所以大树的高为10.5米.21.每年的5月15日是”世界助残日”,我区时代超市门前的台阶共高出地面1.2米,为帮助残疾人,便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过9°,已知此商场门前的人行道距门前垂直距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据:sin9°=0.1564,cos9°=0.9877,tan9°=0.1584)【解答】解:由于台阶共高出地面1.2米,商场门前的人行道距门前垂直距离为8米,则拆除台阶换成斜坡后的坡角的正切值为tanα==0.15<tan9°,因此,此商场能把台阶换成斜坡.22.如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)【解答】解:设CE=xm,则由题意可知BE=xm,AE=(x+100)m.在Rt△AEC中,tan∠CAE=,即tan30°=,∴,3x=(x+100),解得x=50+50=136.6,∴CD=CE+ED=136.6+1.5=138.1≈138(m).答:该建筑物的高度约为138m.23.已知:如图,在山脚的A处测得山顶D的仰角为45°,沿着坡度为30°的斜角前进400米处到B处(即∠BAC=30°,AB=400米),测得D的仰角为60°,求山的高度CD.【解答】解:过B作BF⊥AC于F,在Rt△AFB中,∵AB=400米,∠BAF=30°,∴BF=AB=×400=200(米),AF=AB•cos30°=200(米),∵BF⊥AC,BE⊥DC,∴四边形BFCE是矩形,∴EC=BF=200米,设BE=x米,则FC=x米,在Rt△DBE中,∵∠DBE=60°,∴DE=tan60°•BE=x(米),∵∠DAC=45°,∠C=90°,∴∠ADC=45°,∴AC=DC,∵AC=AF+FC=(200+x)米,DC=DE+EC=(x+200)米,解得:x=200,∴DC=DE+EC=200+200(米).答:山的高度BC约为(200+200)米.24.一段路基的横断面是直角梯形,如图1,已知原来坡面的坡角α的正弦值为0.6,现不改变土石方量,全部利用原有土石方进行坡面改造,使坡度变小,达到如右下图2的技术要求.试求出改造后坡面的坡度是多少?【解答】解:由图可知:BE⊥DC,BE=30m,sinα=0.6,在Rt△BEC中,∵sinα=,∴BC==50(m),在RT△BEC中EC2=BC2﹣BE2,BE=30m,由勾股定理得,EC=40m.在不改变土石方量,全部充分利用原有土石方的前提下进行坡面改造,使坡度变小,则梯形ABCD面积=梯形A1B1C1D面积,∴×(20+60)×30=×20(20+20+EC1)解得EC1=80(m),∴改建后的坡度i=B1E:EC1=20:80=1:4.25.如图,已知Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD、CB相交于点H、E,AH=2CH.(1)求sinB的值;(2)如果CD=,求BE的值.【解答】解:(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD,∵AE⊥CD,∴∠CAH+∠ACH=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论