2023-2024学年北京市九级八上数学期末达标检测模拟试题含解析_第1页
2023-2024学年北京市九级八上数学期末达标检测模拟试题含解析_第2页
2023-2024学年北京市九级八上数学期末达标检测模拟试题含解析_第3页
2023-2024学年北京市九级八上数学期末达标检测模拟试题含解析_第4页
2023-2024学年北京市九级八上数学期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京市九级八上数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.25的平方根是()A.±5 B.﹣5 C.5 D.252.若3x>﹣3y,则下列不等式中一定成立的是()A. B. C. D.3.下列命题是真命题的是()A.若,则B.在同一平面内,如果直线,那么C.有一个角是的三角形是等边三角形D.的算术平方根是4.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个5.化简的结果是()A. B. C. D.16.下列计算结果为的是()A. B. C. D.7.无论x取什么数,总有意义的分式是A. B. C. D.8.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是()A. B. C. D.9.点P的坐标是(2-a,3a+6),且点P到两坐标轴的距离相等,则点P坐标是()A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或10.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.16 B.11 C.3 D.611.如果,那么代数式的值是().A.2 B. C. D.12.利用加减消元法解方程组,下列说法正确的是()A.要消去,可以将①×5+②×3B.要消去,可以将①×+②×2C.要消去,可以将①×3+②×D.要消去,可以将①×5+②×2二、填空题(每题4分,共24分)13.如图,一架长25m的云梯,斜靠在墙上,云梯底端在点A处离墙7米,如果云梯的底部在水平方向左滑动8米到点B处,那么云梯的顶端向下滑了_____m.14.如图,在中,,分别为的中点,点为线段上的一个动点,连接,则的周长的最小值等于__________.15.分式有意义的条件是__________.16.小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算一个内角,结果得到的和是2020°,则少算了这个内角的度数为_________.17.若点和点关于轴对称,则__________.18.如图,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=4,则AD=_____.三、解答题(共78分)19.(8分)已知:如图,为线段上一点,,,.求证:.20.(8分)阅读下列题目的解题过程:已知a、b、c为ΔABC的三边,且满足a2c2解:∵a2∴c2(∴c2∴ΔABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)该步正确的写法应是:;(3)本题正确的结论为:.21.(8分)如图,已知AB=DC,AC=BD,求证:∠B=∠C.22.(10分)用无刻度直尺作图并解答问题:如图,和都是等边三角形,在内部做一点,使得,并给予证明.23.(10分)先化简式子,然后请选取一个你最喜欢的x值代入求出这个式子的值24.(10分)数学课上,老师给出了如下问题:已知:如图1,在Rt△ABC中,∠C=90°,AC=BC,延长CB到点D,∠DBE=45°,点F是边BC上一点,连结AF,作FE⊥AF,交BE于点E.(1)求证:∠CAF=∠DFE;(2)求证:AF=EF.经过独立思考后,老师让同学们小组交流.小辉同学说出了对于第二问的想法:“我想通过构造含有边AF和EF的全等三角形,又考虑到第(1)题中的结论,因此我过点E作EG⊥CD于G(如图2所示),再证明Rt△ACF和Rt△FGE全等,问题就解决了.”你同意小辉的方法吗?如果同意,请给出证明过程;不同意,请给出理由;(3)小亮同学说:“按小辉同学的思路,我还可以有其他添加辅助线的方法.”请你顺着小亮同学的思路在图3中继续尝试,并完成证明.25.(12分)如图,△ABC中,∠B=2∠C.(1)尺规作图:作AC的垂直平分线,交AC于点D,交BC于点E;(2)连接AE,求证:AB=AE26.在等腰三角形ABC中,∠ABC=90度,D是AC边上的动点,连结BD,E、F分别是AB、BC上的点,且DE⊥DF.、(1)如图1,若D为AC边上的中点.(1)填空:∠C=,∠DBC=;(2)求证:△BDE≌△CDF.(3)如图2,D从点C出发,点E在PD上,以每秒1个单位的速度向终点A运动,过点B作BP∥AC,且PB=AC=4,点E在PD上,设点D运动的时间为t秒(0≤1≤4)在点D运动的过程中,图中能否出现全等三角形?若能,请直接写出t的值以及所对应的全等三角形的对数,若不能,请说明理由.

参考答案一、选择题(每题4分,共48分)1、A【分析】如果一个数x的平方等于a,那么x是a是平方根,根据此定义即可解题.【详解】∵(±1)2=21∴21的平方根±1.故选A.2、A【解析】两边都除以3,得x>﹣y,两边都加y,得:x+y>0,故选A.3、B【分析】分情况求解即可;根据垂直于同一条直线的两条直线互相平行即可解答;根据等边三角形的判定即可解答;计算即可求出值解答.【详解】解:或故A选项错误;故B选项正确;有一个角是60°的等腰三角形是等边三角形,缺少等腰的话这句话不成立,故C选项错误;,4的算术平方根是2,故D选项错误;故选:B.【点睛】本题考查都是比较基础的知识点,依次梳理四个选项即可得到正确的答案,其中第4个选项是常考的易错题,需要重视.4、C【分析】根据“”可证明,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于与不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到,则利用平行线的判定方法可对③进行判断.【详解】解:是的中线,,,,,所以④正确;,所以①正确;与不能确定相等,和面积不一定相等,所以②错误;,,,所以③正确;故选:.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.5、B【分析】按照同分母分式的减法运算法则进行计算,分母不变,分子相减,结果能约分要约分成最简分式.【详解】解:故选:B.【点睛】本题考查同分母分式的加减法,题目比较基础,掌握运算法则正确因式分解将计算结果进行约分是解题关键.6、C【解析】根据幂的运算法则分别判断各选项是否正确即可解答.【详解】解:,故A错误;,故B错误;,故C正确;,故D错误;故选:C.【点睛】本题考查了幂的运算法则,准确计算是解题的关键.7、C【分析】按照分式有意义,分母不为零即可求解.【详解】A.,x3+1≠1,x≠﹣1;B.,(x+1)2≠1,x≠﹣1;C.,x2+1≠1,x为任意实数;D.,x2≠1,x≠1.故选C.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.8、D【分析】根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.9、D【分析】由点P到两坐标轴的距离相等,建立绝对值方程再解方程即可得到答案.【详解】解:点P到两坐标轴的距离相等,或当时,当综上:的坐标为:或故选D.【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.10、D【分析】根据三角形的三边关系即可解答.【详解】解:设第三边的长度为x,由题意得:7﹣3<x<7+3,即:4<x<10,故选:D.【点睛】本题考查三角形三边关系,解题的关键是掌握三角形两边之和大于第三边,两边之差小于第三边.11、A【解析】(a-)·=·=·=a+b=2.故选A.12、B【分析】根据x与y的系数分别分析,即可得到答案.【详解】要消去,可以将①×3+②×5,故A、C都错误;要消去,可以将①×+②×2,故B正确,也可以将①×5-②×2,故D错误,故选:B.【点睛】此题考查二元一次方程组的解法:消元法,将两个方程中某个未知数的系数变形为相同或是互为相反数是利用消元法解方程组的关键.二、填空题(每题4分,共24分)13、1【分析】先根据勾股定理求出OC的长度,然后再利用勾股定理求出OD的长度,最后利用CD=OC-OD即可得出答案.【详解】解:如图由题意可得:AC=BD=25m,AO=7m,AB=8m,CD即为所求则OC==21(m),当云梯的底端向左滑了8米,则OB=7+8=15(m),故OD==20(m),则CD=OC-OD=21-20=1m.故答案为:1.【点睛】本题主要考查勾股定理的应用,掌握勾股定理是解题的关键.14、1【分析】由题意可得:当点P与点E重合时,△BPC的周长有最小值,即为AC+BC的长度,由此进行计算即可.【详解】∵∠ABC=90°,D、E分别为AB、AC的中点,∴DE⊥AB,∴DE是线段AB的垂直平分线,∴当点P与点E重合时,△BPC的周长的最小值;BE=AE,如图所示:∴△BPC的周长=EC+BE+BC=AC+BC,又∵AC=10,BC=8,∴△BPC的周长=10+8=1.故答案为:1.【点睛】考查了轴对称-最短路线问题,解题关键利用线段垂直平分线和两点之间线段最短得到点P与点E重合时,△BPC的周长有最小值.15、【分析】根据分式的性质即可求出.【详解】∵是分式,∴∴【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.16、140°【分析】n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2020°,则内角和是(n−2)•180°与2020°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2020°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】设多边形的边数是n,依题意有(n−2)•180°≥2020°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2020°=140°.故答案为:140°.【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.17、-3【分析】根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,求出a、b,代入即可.【详解】解:∵点和点关于轴对称∴a=-5,b=2∴故答案为:.【点睛】此题考查的是关于y轴对称的两点坐标关系,掌握关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等是解决此题的关键.18、1【分析】根据直角三角形两锐角互余求出∠BDC=30°,然后根据30°角所对的直角边等于斜边的一半求出BD,再求出∠ABC,然后求出∠ABD=15°,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,从而得解.【详解】解:∵∠DBC=60°,∠C=90°,

∴∠BDC=90°-60°=30°,

∴BD=2BC=2×4=1,

∵∠C=90°,∠A=15°,

∴∠ABC=90°-15°=75°,

∴∠ABD=∠ABC-∠DBC=75°-60°=15°,

∴∠ABD=∠A,

∴AD=BD=1.

故答案为:1.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等角对等边的性质,熟记性质是解题的关键.三、解答题(共78分)19、详见解析【分析】由题意利用平行线性质和直接利用全等三角形的判定方法得出△ABC≌△ECD,即可得出答案.【详解】证明:,在和中,(全等三角形的对应角相等),(等量代换).【点睛】本题主要考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.20、故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.【解析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2−b2,没有考虑(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【详解】(1)上述解题过程,从第③步开始出现错误;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2),移项得:c2(a2−b2)−(a2+b2)(a2−b2)=0,因式分解得:(a2−b2)[c2−(a2+b2)]=0,则当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形【点睛】此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.21、证明见解析.【分析】连接AD,利用SSS判定△ABD≌△DCA,根据全等三角形的对应角相等即证.【详解】连结AD在△BAD和△CDA中∴△BAD≌△CDA(SSS)∴∠B=∠C(全等三角形对应角相等).【点睛】本题考查三角形全等的判定方法和三角形全等的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、图详见解析,证明详见解析【分析】已知和都是等边三角形,可得出AD=AB,AC=AE;∠DAB=∠EAC=60°,然后证明△DAC≌△BAE,即可得出∠ADC=∠ABE,即可得出∠BPC为120°.【详解】用无刻度直尺作图并解答问题如图,连接CD、BE交于点P,∠BPC=120°.∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE;∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE;∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,又∵∠AQD=∠BQP∴∠BPD=∠DAB=60°,∴∠BPC=120°【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质.23、;x=2时,原式=-1.【分析】先把括号内的分式通分,按照分式减法的运算法则计算,再根据分式除法的运算法则化简,得出最简结果,根据分式有意义的条件选取x的值,代入求值即可.【详解】原式====∵有意义,∴x≠1,x≠0,∴x可以取0和1之外的任何数,当x=2时,原式=,【点睛】本题考查分式的运算——化简求值,熟练掌握分式的混合原式法则是解题关键,注意分式有意义,分母不为0,这一隐含条件.24、(1)见解析;(2)不同意小辉的方法,理由见解析;(3)见解析【分析】(1)依据“同角的余角相等”,即可得到∠CAF=∠DFE;(2)不同意小辉的方法,理由是两个三角形中只有两个角对应相等无法判定其是否全等;(3)在AC上截取AG=BF,连结FG,依据ASA即可判定△AGF≌△FBE,进而得出AF=EF.【详解】解:证明:(1)∵∠C=90°,∴∠CAF+∠AFC=90°.∵FE⊥AF,∴∠DFE+∠AFC=90°.∴∠CAF=∠DFE.(2)不同意小辉的方法,理由:根据已知条件,两个三角形中只有两个角对应相等即∠CAF=∠DFE和∠C=∠EGF=90°,没有对应边相等,故不能判定两个三角形全等.(3)如图3,在AC上截取AG=BF,连结FG,∵AC=BC,∴AC﹣AG=BC﹣BF,即CG=CF.∵∠C=90°,∴△CGF为等腰直角三角形,∴∠CGF=∠CFG=45°.∴∠AGF=180°﹣∠CGF=135°.∵∠DBE=45°,∴∠FBE=180°﹣∠DBE=135°.∴∠AGF=∠FBE.在△AGF和△FBE中:∴△AGF≌△FBE(ASA).∴AF=EF.【点睛】此题主要考查了等腰直角三角形的性质和判定,全等三角形的性质和判定,解本题的关键是在AC上截取AG=BF,构造辅助线后证明△AGE≌△FBE.25、(1)见解析;(2)见解析.【分析】(1)分别以A、C为圆心,大于AC长为半径画弧,两弧交于两点,过两点画直线,交BC边于点E,交AC边于点D;

(2)由已知条件,利用线段的垂直平分线的性质,得到AE=CE,所以∠EAC=∠C.于是可得∠AEB=2∠C,故∠AEB=∠B,所以AB=AE.【详解】解:(1)如图所示,DE即为所求;

(2)∵DE垂直平分AC,

∴AE=CE.

∴∠EAC=∠C.∴∠AEB=2∠C.∵∠B=2∠C.

∴∠AEB=∠B.∴AB=AE.【点睛】此题主要考查了线段垂直平分线的作法和性质,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等.26、(1)45°,45°;(2)见解析;(3)当t=0时,△PBE≌△CAE一对,当t=2时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论