2023-2024学年贵州省黔东南州麻江县八年级数学第一学期期末达标检测模拟试题含解析_第1页
2023-2024学年贵州省黔东南州麻江县八年级数学第一学期期末达标检测模拟试题含解析_第2页
2023-2024学年贵州省黔东南州麻江县八年级数学第一学期期末达标检测模拟试题含解析_第3页
2023-2024学年贵州省黔东南州麻江县八年级数学第一学期期末达标检测模拟试题含解析_第4页
2023-2024学年贵州省黔东南州麻江县八年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年贵州省黔东南州麻江县八年级数学第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:头、爱、我、汕、丽、美,现将因式分解,结果呈现的密码信息可能是()A.我爱美 B.汕头美 C.我爱汕头 D.汕头美丽2.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是()A. B.C. D.3.如图,等腰直角△ABC中,AC=BC,BE平分∠ABC,AD⊥BE的延长线于点D,若AD=2,则△ABE的面积为().A.4 B.6 C.2 D.24.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()

A. B.C. D.5.已知A=﹣4x2,B是多项式,在计算B+A时,小马虎同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2 B.﹣8x3+8x2 C.﹣8x3 D.8x36.下列根式中,与是同类二次根式的是()A. B. C. D.7.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或18.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7C.n=8 D.n=99.等腰三角形的一个内角为50°,它的顶角的度数是()A.40° B.50° C.50°或40° D.50°或80°10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种 B.4种 C.3种 D.2种11.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°12.如图,在△ABC中,AB=BC,顶点B在y轴上,顶点C的坐标为(2,0),若一次函数y=kx+2的图象经过点A,则k的值为()A. B.- C.1 D.-1二、填空题(每题4分,共24分)13.如图,在中,,是边上两点,且所在的直线垂直平分线段,平分,,则的长为________.14.______________.15.若,则点到轴的距离为__________.16.有一个长方体,长为4cm,宽2cm,高2cm,试求蚂蚁从A点到G的最短路程________17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,∠BAC的平分线AD长为8cm,则BC=__________18.x+=3,则x2+=_____.三、解答题(共78分)19.(8分)已知长方形的长为a,宽为b,周长为16,两边的平方和为1.求此长方形的面积.20.(8分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.21.(8分)在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.22.(10分)如图,AB∥DC,AB=DC,AC与BD相交于点O.求证:AO=CO.23.(10分)某火车站北广场将于2019年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少课;(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?24.(10分)(1)计算:(2)求x的值:25.(12分)分解因式:(1);(2)26.如图,中,,,.(1)用直尺和圆规在边上找一点,使到的距离等于.(2)是的________线.(3)计算(1)中线段的长.

参考答案一、选择题(每题4分,共48分)1、C【分析】先提取公因式(),然后再利用平方法公式因式分解可得.【详解】故对应的密码为:我爱汕头故选:C【点睛】本题考查因式分解,注意,当式子可提取公因式时,我们在因式分解中,往往先提取公因式.2、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴可得答案.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.3、A【分析】过点E作于F,设,运用等腰直角三角形将其它各未知线段用表示;延长AD与BC的延长线交于点G,依据ASA判定△ABD≌△GBD,依据全等的性质求得DG=AD=2,,继而得到AG=4,;接着在直角△ACG中,运用勾股定理列出关于的方程,解出代入到中即可.【详解】解:延长AD与BC的延长线交于点G,过点E作于F,易得是等腰直角三角形,∴∵BE平分∠ABC,EC⊥BC,,∴EF=EC,,∴设则,,∵AD⊥BE,∴,∵在△ABD和△GBD中,∴△ABD≌△GBD(ASA)∴DG=AD=2,∴AG=4,∵在直角△ACG中,ACG=90°,,AG=4,,∴∴∴=4.故选:A.【点睛】本题考查了等腰直角三角形三边关系、运用全等构造等腰三角形和勾股定理的综合问题,设立未知数表示各未知线段、根据图形特征作辅助线构造熟悉图形、并根据勾股定理建立起各未知量之间的等式是解题的关键.4、B【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.5、C【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x2•B=32x5-16x4,∴B=-8x3+4x2∴A+B=-8x3+4x2+(-4x2)=-8x3故选C.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.6、B【分析】先化简各选项,根据同类二次根式的定义判断即可.【详解】解:A、,不符合题意,故A错误;B、,符合题意,故B正确;C、,不符合题意,故C错误;D、,不符合题意,故D错误;故选:B.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.7、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.【点睛】本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.8、C【分析】根据n边形的内角和等于外角和的3倍,可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,

解得:n=8,

故选C.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.9、D【分析】根据50°是顶角的度数或底角的度数分类讨论,然后结合三角形的内角和定理即可得出结论.【详解】解:①若顶角的度数为50°时,此时符合题意;②若底角的度数为50°时,则等腰三角形的顶角为:180°-50°-50°=80°综上所述:它的顶角的度数是50°或80°故选D.【点睛】此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和分类讨论的数学思想是解决此题的关键.10、C【解析】试题分析:设住3人间的需要有x间,住2人间的需要有y间,则根据题意得,3x+2y=17,∵2y是偶数,17是奇数,∴3x只能是奇数,即x必须是奇数.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x>5时,y<1.∴她们有3种租住方案:第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的.故选C.11、C【分析】先根据平行线的性质得出的度数,进而可得出结论.【详解】解:,,故选:【点睛】此题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.12、C【解析】先根据等腰三角形的性质求出点A的坐标,再把顶点A的坐标代入一次函数y=kx+2,求出k的值即可.【详解】解:∵AB=BC,∴△ABC是等腰三角形,∵等腰三角形ABC的顶点B在y轴上,C的坐标为(2,0),∴A(-2,0),∵一次函数y=kx+2的图象经过点A,∴0=-2k+2,解得k=1,故选C.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题(每题4分,共24分)13、1【分析】根据CE垂直平分AD,得AC=CD,再根据等腰三角形的三线合一,得∠ACE=∠ECD,结合角平分线定义和∠ACB=90°,得∠ACE=∠ECD=∠DCB=30°,则∠A=60°,进而求得∠B=30°,则BD=CD=AC,由此即可求得答案.【详解】∵CE垂直平分AD,∴AC=CD=1,∴∠ACE=∠ECD,∵CD平分∠ECB,∴∠ECD=∠DCB,∵∠ACB=90°,∴∠ACE=∠ECD=∠DCB=30°,∴∠A=90°-∠ACE=60°,∴∠B=90°-∠A=30°,∴∠DCB=∠B,∴BD=CD=1,故答案为:1.【点睛】本题考查了线段垂直平分线的性质,等腰三角形的判定与性质,直角三角形两锐角互余等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.14、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【详解】解:,故答案为:.【点睛】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.15、1【分析】根据平面直角坐标系中点的坐标的几何意义解答即可.【详解】解:∵点P的坐标为(-1,2),

∴点P到x轴的距离为|2|=2,到y轴的距离为|-1|=1.故填:1.【点睛】解答此题的关键是要熟练掌握点到坐标轴的距离与横纵坐标之间的关系,即点到x轴的距离是横坐标的绝对值,点到y轴的距离是纵坐标的绝对值.16、【分析】两点之间线段最短,把A,G放到同一个平面内,从A到G可以有3条路可以到达,求出3种情况比较,选择最短的.【详解】解:第一种情况:第二种情况:第三种情况:综上,最小值为【点睛】如此类求蚂蚁从一个点到另一个点的最短距离的数学问题,往往都需要比较三种路径的长短,选出最优的.17、12cm【分析】因为AD是∠BAC的平分线,∠BAC=60°,在Rt△ACD中,可利用勾股定理求得DC,进一步求得AC;求得∠ABC=30°,在Rt△ABC中,可求得AB,最后利用勾股定理求出BC.【详解】∵AD是∠BAC的平分线,∠BAC=60°,∴∠DAC=30°,∴DC=AD=4cm,∴AC==4,∵在△ABC中,∠C=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=8,∴BC==12cm.故答案为:12cm.【点睛】本题考查了角平分线的定义,含30°直角三角形的性质,勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18、1【解析】直接利用完全平方公式将已知变形,进而求出答案.【详解】解:∵x+=3,∴(x+)2=9,∴x2++2=9,∴x2+=1.故答案为1.【点睛】此题主要考查了分式的混合运算,正确应用完全平方公式是解题关键.三、解答题(共78分)19、3【分析】先根据长方形的周长得到a+b=8,然后再根据两边的平方和为1,即a2+b2=1;最后变形完全平方公式求出ab的值即可【详解】解:∵a+b=16÷2=8,∴(a+b)2=a2+2ab+b2=2.∵a2+b2=1,∴ab=3.【点睛】本题考查了因式分解的应用,弄清题意、确定各量之间的关系以及灵活运用完全平方公式是解答本题的关键.20、(1)证明见解析;(2).【分析】(1)由矩形的性质可得∠ACB=∠DAC,然后利用“ASA”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)由菱形的性质可得:菱形AECF的面积=EC×AB=AC×EF,进而得到EF的长.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)∵菱形AECF的面积=EC×AB=AC×EF,又∵AB=6,AC=10,EC=,∴×6=×10×EF,解得EF=.【点睛】考核知识点:菱形性质.理解性质是关键.21、(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.

(2)根据加权平均数的公式可以计算出平均数;

(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,=3次,∴这组数据的中位数是3次;故答案为:3,4.(2)观察条形统计图,可知这组样本数据的平均数:=3.3次,则这组样本数据的平均数是3.3次.(3)1000×=360(人)∴该校学生共参加4次活动约为360人.【点睛】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解题的关键.22、证明见解析.【解析】试题分析:由AB∥CD,可得∠A=∠C,∠B=∠D,结合AB=CD即可由“ASA”证得△AOB≌△COD,由此可得OA=OC.试题解析:∵AB∥CD,∴∠A=∠C,∠B=∠D,又∵AB=CD,∴△AOB≌△COD,∴OA=OC.23、(1)A种花木的数量是4200棵,B种花木的数量是2400棵;(2)安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.【分析】(1)根据在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵可以列出相应的二元一次方程组,从而可以解答本题;

(2)根据安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,可以列出相应的二元一次方程组,从而可以解答本题.【详解】(1)设A,B两种花木的数量分别是x棵、y棵,由题意得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论