版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年保定市重点中学数学八上期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如果把分式中的、的值都扩大为原来的2倍,那么分式的值()A.扩大为原来的2倍 B.缩小为原来的一半C.扩大为原来的4倍 D.保持不变2.已知为正整数,也是正整数,那么满足条件的的最小值是()A.3 B.12 C.2 D.1923.如图,在△ABC中,∠C=90°,AC=BC,D为BC上一点,且DE⊥AB于E,若DE=CD,AB=8cm,则△DEB的周长为()A.4cm B.8cm C.10cm D.14cm4.已知是三角形的三边长,如果满足,则三角形的形状是()A.等腰三角形 B.等边三角形 C.直角三角形 D.钝角三角形5.长度分别为3,7,a的三条线段能组成一个三角形,则a的值可以是()A.3 B.4 C.6 D.106.如图,△ABC≌△AEF且点F在BC上,若AB=AE,∠B=∠E,则下列结论错误的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC7.下列函数中不经过第四象限的是()A.y=﹣x B.y=2x﹣1 C.y=﹣x﹣1 D.y=x+18.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:,,3,,,分别对应下列六个字:益,爱,我,数,学,广,现将因式分解,结果呈现的密码信息可能是()A.我爱学 B.爱广益 C.我爱广益 D.广益数学9.下列命题中是真命题的是()A.三角形的任意两边之和小于第三边B.三角形的一个外角等于任意两个内角的和C.两直线平行,同旁内角相等D.平行于同一条直线的两条直线平行10.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.411.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定12.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.14.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.15.已知实数m,n满足则=_____.16.关于的一次函数,其中为常数且.①当时,此函数为正比例函数.②无论取何值,此函数图象必经过.③若函数图象经过,(,为常数),则.④无论取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.17.若分式方程有增根,则的值为__________.18.计算:的结果是________.三、解答题(共78分)19.(8分)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行力四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数比较稳定?20.(8分)在开展“学雷锋社会实践”活动中,某校为了解全校1000名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成如图的条形统计图:(1)这50个样本数据的中位数是次,众数是次;(2)求这50个样本数据的平均数;(3)根据样本数据,估算该校1000名学生大约有多少人参加了4次实践活动.21.(8分)在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=α.(1)如图1,将AD、EB延长,延长线相交于点0.①求证:BE=AD;②用含α的式子表示∠AOB的度数(直接写出结果);(2)如图2,当α=45°时,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N.求证:N是BD的中点.注:第(2)问的解答过程无需注明理由.22.(10分)如图,已知△ABC的其中两个顶点分别为:A(-4,1)、B(-2,4).(1)请根据题意,在图中建立平面直角坐标系,并写出点C的坐标;(2)若△ABC每个点的横坐标保持不变,纵坐标分别乘-1,顺次连接这些点,得到△A1B1C1,画出△A1B1C1,判断△A1B1C1与△ABC有怎样的位置关系?并写出点B的对应点B1的坐标.23.(10分)如图,三个顶点的坐标分别为.(1)请画出关于轴对称的,并写出的坐标;(2)在轴上求作一点,使的周长最小,并直接写出点的坐标.24.(10分)与是两块全等的含的三角板,按如图①所示拼在一起,与重合.(1)求证:四边形为平行四边形;(2)取中点,将绕点顺时针方向旋转到如图位置,直线与分别相交于两点,猜想长度的大小关系,并证明你的猜想;(3)在(2)的条件下,当旋转角为多少度时,四边形为菱形.并说明理由.25.(12分)如图,已知四边形ABCD,AB=DC,AC、BD交于点O,要使,还需添加一个条件.请从条件:(1)OB=OC;(2)AC=DB中选择一个合适的条件,并证明你的结论.解:我选择添加的条件是____,证明如下:26.(1)计算;(2)已知4(x+1)2=9,求出x的值.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据分式的基本性质,求得x,y的值均扩大为原来的2倍式子的值,与原式比较即可求解.【详解】把分式中的、的值都扩大为原来的2倍,可得,;∴把分式中的、的值都扩大为原来的2倍,分式的值不变.故选D.【点睛】本题考查了分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.2、A【分析】因为是正整数,且==,因为是整数,则1n是完全平方数,可得n的最小值.【详解】解:∵是正整数,则==,是正整数,∴1n是完全平方数,满足条件的最小正整数n为1.故选A.【点睛】此题主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则,解题关键是分解成一个完全平方数和一个代数式的积的形式.3、B【分析】因为DE和CD相等,DE⊥AB,∠C=90°,所以AD平分CAB,可证得△ACD≌△AED,得到AC=AE,再根据△BDE为等腰直角三角形得出DE=BE,从而可得△DEB的周长.【详解】解:∵∠C=90°,DE⊥AB,DE=CD,
∴∠C=∠AED=90°,∠CAD=∠EAD,在Rt△ACD和Rt△AED中,,
∴△ACD≌△AED(HL),
∴AC=AE,
又∵∠AED=90°,∠B=45°,
可得△EDB为等腰直角三角形,DE=EB=CD,
∴△DEB的周长=DE+BE+DB=CD+DB+BE=CB+BE=AC+BE=AE+BE=AB=8,
故选:B.【点睛】本题考查了角平分线的判定,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.4、C【分析】根据非负数的性质可知a,b,c的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:∵∴,,,∴,,又∵,故该三角形为直角三角形,故答案为:C.【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a,b,c的值,并正确运用勾股定理的逆定理.5、C【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【详解】解:7−3<x<7+3,即4<x<10,只有选项C符合题意,故选:C.【点睛】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.6、B【分析】全等三角形的对应边相等,对应角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【详解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C选项正确.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正确.∠AFE和∠BFE找不到对应关系,故不一定相等.故选:B.【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.7、D【解析】试题解析:A.,图象经过第二、四象限.B.,图象经过第一、三、四象限.C.,图象经过第二、三、四象限.D.,图象经过第一、二、三象限.故选D.8、C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为==所以结果呈现的密码信息可能是:我爱广益.故选:C【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键.9、D【分析】根据三角形的三边关系、三角形的外角性质、平行线的性质、平行公理判断即可.【详解】解:A、三角形的任意两边之和大于第三边,本选项说法是假命题;B、三角形的一个外角等于与它不相邻的两个内角的和,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、平行于同一条直线的两条直线平行,本选项说法是真命题;故选:D.【点睛】本题主要考查真假命题,掌握三角形的三边关系、三角形的外角性质、平行线的性质、平行公理是解题的关键.10、D【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出△ABD≌△ACE,由全等三角形的对应边相等得到BD=CE;②由△ABD≌△ACE得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=180°.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,本选项正确;④由题意,∠BAE+∠DAC=360°-∠BAC-∠DAE=360°-90°-90°=180°,本选项正确;故选D.【点睛】本题考查了全等三角形的判定与性质以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.11、B【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.12、C【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解:根据题意,得.故选C.二、填空题(每题4分,共24分)13、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.14、(a+2)(a﹣2)=a2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a﹣2),图②中阴影部分面积=a2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a﹣2)=a2﹣1,故答案为:(a+2)(a﹣2)=a2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.15、【分析】根据完全平方公式进行变形,得到可得到结果,再开方即可得到最终结果.【详解】,代入可得,所以故答案为:.【点睛】考查利用完全平方公式求代数式的值,学生熟练掌握完全平方公式是本题解题的关键,并利用开平方求得最后的结果.16、②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则,为一次函数,故①错误;②整理得:,∴x=2时,y=5,∴此函数图象必经过,故②正确;③把,代入中,得:,②-①得:,解得:,故③正确;④当k+2<0时,即k<-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.17、【分析】先将分式方程去分母转化为整式方程,再由分式方程有增根得到,然后将的值代入整式方程求出的值即可.【详解】∵∴∵若分式方程有增根∴∴故答案是:【点睛】本题考查了分式方程的增根,掌握增根的定义是解题的关键.18、【分析】根据二次根式的乘法公式和积的乘方的逆用计算即可.【详解】解:====故答案为:【点睛】此题考查的是二次根式的运算,掌握二次根式的乘法公式和积的乘方的逆用是解决此题的关键.三、解答题(共78分)19、(1),图见解析;(2)甲组成绩优秀的人数较稳定【分析】(1)结合两个统计图,先求出总人数,然后即可得出第三次的优秀率和第四次乙组的优秀人数;(2)求出乙组的平均数和方差,与甲组比较即可.【详解】(1)总人数:(人),第三次的优秀率:第四次乙组的优秀人数为:(人)补全条形统计图,如图所示:(2),,所以甲组成绩优秀的人数较稳定.【点睛】此题主要考查统计图的相关知识以及平均数、方差的求解,熟练掌握,即可解题.20、(1)3,4;(2)这组样本数据的平均数是3.3次;(3)该校学生共参加4次活动约为360人.【分析】(1)根据众数的定义和中位数的定义,即可求出众数与中位数.
(2)根据加权平均数的公式可以计算出平均数;
(3)利用样本估计总体的方法,用1000×百分比即可.【详解】解:(1)∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4次.∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,=3次,∴这组数据的中位数是3次;故答案为:3,4.(2)观察条形统计图,可知这组样本数据的平均数:=3.3次,则这组样本数据的平均数是3.3次.(3)1000×=360(人)∴该校学生共参加4次活动约为360人.【点睛】本题考查的是条形统计图,平均数,众数,中位数,以及样本估计总体.读懂统计图,从统计图中得到必要的信息,掌握众数、中位数的定义是解题的关键.21、(1)①见解析②∠BOA=2α(2)见解析【解析】(1)①根据等腰三角形的性质和三角形的内角和得到∠ACB=∠DCE,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到∠CAD=∠CBE=α+∠BAO,根据三角形的内角和即可得到结论;(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,根据全等三角形的性质得到MC=BP,同理CM=DQ,等量替换得到DQ=BP,根据全等三角形的性质即可得到结论.【详解】(1)①∵CA=CB,CD=CE,∠CAB=∠CED=α,∴∠ACB=180°-2α,∠DCE=180°-2α,∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB∴∠ACD=∠BCE在△ACD和△BCE中∴△ACD≌△BCE∴BE=AD;②∵△ACD≌△BCE∴∠CAD=∠CBE=α+∠BAO,∵∠ABE=∠BOA+∠BAO∴∠CBE+α=∠BOA+∠BAO∴∠BAO+α+α=∠BOA+∠BAO∴∠BOA=2α(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,∵∠BCP+∠BCA=∠CAM+∠AMC∴∠BCA=∠AMC∴∠BCP=∠CAM在△CBP和△ACM中∴△CBP≌△ACM(AAS)∴MC=BP.同理△CDQ≌△ECM∴CM=DQ∴DQ=BP在△BPN和△DQN中∴△BPN≌△DQN∴BN=ND,∴N是BD中点.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线进行求解.22、(1)图见解析,点C的坐标为(3,3);(2)图见解析,B1的坐标为(-2,-4)【分析】(1)直接利用已知点建立平面直角坐标系进而得出答案;(2)利用坐标之间的关系得出△A1B1C1各顶点位置,进而得出答案.【详解】解:(1)平面直角坐标系如图所示.点C的坐标为(3,3).(2)△A1B1C1如图所示.△A1B1C1与△ABC关于x轴对称.点B的对应点B1的坐标为(-2,-4).【点睛】此题主要考查了轴对称变换,正确得出各对应点位置是解题关键.23、(1)见解析;A1(1,1)、B1(4,2)、C1(3,4);(2)见解析;P点坐标为(﹣2,0).【分析】(1)先在坐标系中分别画出点A,B,C关于y轴的对称点,再连线,得到,进而写出、、的坐标即可;(2)先画出点B关于x轴的对称点B′,再连接B′A交x轴于点P,即为所求.【详解】(1)如图所示:△A1B1C1,即为所求,A1、B1、C1的坐标分别为A1(1,1)、B1(4,2)、C1(3,4)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业外教2024年度服务协议样本版
- 2025年度大型餐饮集团厨师长职业发展规划与薪酬体系合同3篇
- 2024年04月绵阳市商业银行2024年春季招考笔试历年参考题库附带答案详解
- 2025年度厂房租赁安全协议:安全生产目标管理与考核评价合同3篇
- 2024年04月重庆重庆银行总行内控合规部招考笔试历年参考题库附带答案详解
- 2025年度智能制造装备厂房承包与技术支持合同4篇
- 个人住宅出租协议格式(2024版)版B版
- 2024简明居间服务协议模板版B版
- 2025年度彩钢景观亭搭建安装合同3篇
- 2025年度国际承包工程合同履约保证金管理办法3篇
- 中国华能集团公司风力发电场运行导则(马晋辉20231.1.13)
- 中考语文非连续性文本阅读10篇专项练习及答案
- 2022-2023学年度六年级数学(上册)寒假作业【每日一练】
- 法人不承担责任协议书(3篇)
- 电工工具报价单
- 反歧视程序文件
- 油气藏类型、典型的相图特征和识别实例
- 流体静力学课件
- 顾客忠诚度论文
- 实验室安全检查自查表
- 证券公司绩效考核管理办法
评论
0/150
提交评论