版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省菏泽市巨野县八年级数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.运用乘法公式计算,下列结果正确的是()A. B. C. D.2.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11 B.12 C.13 D.11或133.下列坐标点在第四象限的是()A. B. C. D.4.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.∠A=∠D C.∠ACB=∠DEB D.AC=DE5.如图,已知,添加以下条件,不能判定的是()A. B. C. D.6.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D7.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知是一个任意角,在边,上分别取,移动角尺两边相同的刻度分别与点、重合,则过角尺顶点的射线便是角平分线.在证明时运用的判定定理是()A. B. C. D.8.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称9.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.251.002.503.00则成绩发挥最稳定的是()A.甲 B.乙 C.丙 D.丁10.如图,已知AB=AC,AD⊥BC,AE=AF,图中共有()对全等三角形.A.5 B.6 C.7 D.811.已知A(1,﹣3),B(2,﹣2),现将线段AB平移至A1B1,如果A1(a,1),B1(5,b),那么ab的值是()A.32 B.16 C.5 D.412.点P(3,-1)关于x轴对称的点的坐标是()A.(-3,1) B.(-3,-1) C.(1,-3) D.(3,1)二、填空题(每题4分,共24分)13.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.14.若(x2﹣a)x+2x的展开式中只含有x3这一项,则a的值是_____.15.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM的周长的最小值为_____.16.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C=______.17.=________.18.如图,直线,被直线所截,若直线,,则____.三、解答题(共78分)19.(8分)垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是1.运动员甲测试成绩统计表测试序号12345618910成绩(分)16816868(1)填空:______;______.(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?20.(8分)如图,△ABC为等腰三角形,AC=BC,△BDC和△CAE分别为等边三角形,AE与BD相交于点F,连接CF并延长,交AB于点G.求证:∠ACG=∠BCG.21.(8分)如图,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的长.22.(10分)如图,在平面直角坐标系中,过点的直线与直线相交于点,动点在线段和射线上运动.(1)求直线的解析式.(2)求的面积.(3)是否存在点,使的面积是的面积的?若存在求出此时点的坐标;若不存在,说明理由.23.(10分)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD.(1)根据作图判断:△ABD的形状是;(2)若BD=10,求CD的长.24.(10分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.25.(12分)先化简,再求值:1-÷,其中x=-2.26.如图,在中,,以为直角边作等腰,,斜边交于点.(1)如图1,若,,作于,求线段的长;(2)如图2,作,且,连接,且为中点,求证:.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用添括号法则将y-3看成一个整体,然后利用平方差公式和完全平方公式计算即可.【详解】解:====故选B.【点睛】此题考查的是平方差公式和完全平方公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.2、D【分析】根据等腰三角形的性质分两种情况讨论可得.【详解】①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=1,综上所述,它的周长是:11或1.故选D.【点睛】此题考查了等腰三角形的性质与三角形三边关系.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.3、D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),
故选:D.【点睛】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.4、D【分析】本题要判定△ABC≌△DBE,已知AB=DB,∠1=∠2,具备了一组边一个角对应相等,对选项一一分析,选出正确答案.【详解】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;
B、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.
C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;
D、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;
故选D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、C【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.6、B【解析】由题意知(10,20)表示向东走10米,再向北走20米,故为B点.7、A【分析】由作图过程可得,,再加上公共边可利用SSS定理判定≌.【详解】解:在和中,
≌,
,
故选:A.【点睛】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.8、D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.9、A【分析】根据方差的意义比较出甲、乙、丙、丁的大小,即可得出答案.【详解】解:∵甲的方差最小,∴成绩发挥最稳定的是甲,故选:A.【点睛】本题考查的知识点是方差的意义,方差是用来反映一组数据整体波动大小的特征量,方差越小,数据的波动越小.10、C【分析】本题主要考查两个三角形全等的条件:两边夹一角(SAS),两角夹一边(ASA),两角对一边(AAS),三条边(SSS),HL.【详解】7对.理由:根据全等三角形判定可知:△ABE≌△ACF;△ABD≌△ACD;△ABO≌△ACO;△AEO≌△AFO;△COE≌△BOF;△DCO≌△DBO;△BCE≌△CBF.故选C.【点睛】本题考查全等三角形的判定,学生们熟练掌握判定的方法即可.11、B【分析】利用平移的规律求出a,b即可解决问题.【详解】解:∵A(1,﹣3),B(2,﹣2)平移后为A1(a,1),B1(5,b),∴平移方式为向右平移3个单位长度,向上平移4个单位长度,∴a=4,b=2,∴ab=42=16,故选:B.【点睛】本题主要考查平移变换和有理数的乘方运算,解题的关键是根据点的平移求出a,b的值.12、D【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【详解】解:点P(3,-1)关于x轴对称的点的坐标是:(3,1).
故选:D.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.二、填空题(每题4分,共24分)13、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.14、1【分析】首先利用单项式乘以多项式整理得出x3+(1﹣a)x进而根据展开式中只含有x3这一项得出1﹣a=0,求出即可.【详解】解:∵(x1﹣a)x+1x的展开式中只含有x3这一项,∴x3﹣ax+1x=x3+(1﹣a)x中1﹣a=0,∴a=1,故答案为:1.【点睛】本题考查单项式乘以多项式,熟练掌握运算法则是解题的关键.15、1.【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×6×AD=18,解得AD=6,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=1.故答案为:1.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,轴对称-最短路线问题.能根据轴对称的性质得出AM=MC,并由此得出MC+DM=MA+DM≥AD是解决此题的关键.16、35°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【详解】∵△ABD中,AB=AD,∠B=70°,
∴∠B=∠ADB=70°,
∴∠ADC=180°﹣∠ADB=110°,
∵AD=CD,
∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°.【点睛】本题主要考查等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.17、1.【解析】试题分析:先算括号里的,再开方..故答案是1.考点:算术平方根.18、【分析】本题主要利用两直线平行,同位角相等;以及邻补角的定义进行做题.【详解】∵a∥b,∴∠1=∠3=,∵∠3与∠2互为邻补角,∴∠2=.故答案为:.【点睛】本题重点考查了平行线的性质及邻补角的定义,是一道较为简单的题目.三、解答题(共78分)19、(1)1,1;(2)选乙运动员更合适,理由见解析.【分析】(1)观察表格,根据众数的定义即可求解;(2)先分别求出三人的方差,再根据方差的意义求解即可.【详解】解:(1)∵运动员甲测试成绩的众数是1,∴数据1出现的次数最多,∵甲测试成绩中6分与8分均出现了3次,而一共测试10次,∴甲测试成绩中1分出现的次数为4次,而1分已经出现2次,∴.故答案为:1,1;(2)甲成绩重新排列为:6、6、6、1、1、1、1、8、8、8,∴,,,,,,∵,,∴选乙运动员更合适.【点睛】本题考查方差、条形图、折线图、中位数、众数、平均数等知识,熟练掌握基本概念以及运用公式求出平均数和方差是解题的关键.20、见解析【分析】根据等边三角形的性质和等腰三角形的性质得出∠FAG=∠FBG,得到FA=FB,推出FC为AB的垂直平分线,根据等腰三角形底边三线合一即可解题.【详解】∵△BDC和△ACE分别为等边三角形,∴∠CAE=∠CBD=60°,∵AC=BC,∴∠CAB=∠CBA,∴∠FAG=∠FBG,∴FA=FB,又∵CA=CB,∴FC为AB的垂直平分线,∴∠ACG=∠BCG.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,线段垂直平分线的判定和性质.掌握等腰三角形底边三线合一的性质是解题的关键.21、CD=2.【分析】先延长AD、BC交于E,根据已知证出△CDE是等边三角形,设CD=x=CE=DE=x,根据AD=4,BC=1和30度角所对的直角边等于斜边的一半,求出x的值即可.【详解】延长AD、BC,两条延长线交于点E,∵∠B=90°,∠A=30°∴∠E=60°∵∠ADC=120°∴∠CDE=60°∴△CDE是等边三角形则CD=CE=DE设CD=x,则CE=DE=x,AE=x+4,BE=x+1∵在Rt△ABE中,∠A=30°∴x+4=2(x+1)解得:x=2∴CD=2.【点睛】此题考查了含30度角的直角三角形,用到的知识点是30度角所对的直角边等于斜边的一半,等边三角形的判定与性质,关键是作出辅助线,构造直角三角形.22、(1)y=-x+6;(2)12;(3)M1(2,1)或M2(2,4)或M3(-2,8).【解析】(1)利用待定系数法即可求得函数的解析式;(2)求得C的坐标,即OC的长,利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【详解】解:(1)设直线AB的解析式是y=kx+b,根据题意得,解得:,则直线的解析式是:y=-x+6;
(2)在y=-x+6中,令x=0,解得:y=6,S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=,则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,又∵动点在线段和射线上运动∴①当M的横坐标是×4=2,在y=x中,当x=2时,y=1,则M的坐标是(2,1);在y=-x+6中,x=2则y=4,则M的坐标是(2,4).则M的坐标是:M1(2,1)或M2(2,4).②当M的横坐标是:-2,在y=-x+6中,当x=-2时,y=8,则M的坐标是(-2,8);综上所述:M的坐标是:M1(2,1)或M2(2,4)或M3(-2,8).【点睛】本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±2分别求出是解题关键.23、(1)等腰三角形;(2)1【分析】(1)由作图可知,MN垂直平分线段AB,利用垂直平分线的性质即可解决问题.(2)求出∠CAD=30°,利用直角三角形30度的性质解决问题即可.【详解】解:(1)由作图可知,MN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024苏州租房合同范本
- 2025年度学校食堂洗碗服务外包合同范本4篇
- 2025年度艺术品鉴定居间服务合同协议4篇
- 2025年琴行乐器采购及维修服务合同
- 二零二五版幕墙施工劳务分包合同施工合同终止与解除范本2篇
- 2025年度水稻种植回收与农产品质量安全监管合同
- 2025年度酒店与单位签订的企业差旅协议价合同
- 二零二五年度理发店转让合同-附带周边资源整合及市场推广服务
- 2025年度水电站安全生产责任与长期承包管理合同
- 2024职业卫生技术服务合同
- 2024版个人私有房屋购买合同
- 2024爆炸物运输安全保障协议版B版
- 《食品与食品》课件
- 读书分享会《白夜行》
- 光伏工程施工组织设计
- DB4101-T 121-2024 类家庭社会工作服务规范
- 化学纤维的鉴别与测试方法考核试卷
- 2024-2025学年全国中学生天文知识竞赛考试题库(含答案)
- 临床微生物检查课件 第2章细菌的生理
- 作品著作权独家授权协议(部分授权)
- 取水泵站施工组织设计
评论
0/150
提交评论