版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年辽宁省抚顺抚顺县联考八上数学期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:,甲:,乙:,丙:,丁:1接力中,计算出现错误的是().A.甲 B.乙 C.丙 D.丁2.已知a、b、c是的三条边,且满足,则是()A.锐角三角形 B.钝角三角形C.等腰三角形 D.等边三角形3.如图,在△ABC中,AB=8,BC=10,AC=6,则BC边上的高AD为()A.8 B.9 C. D.104.下列命题中,是假命题的是()A.对顶角相等B.同旁内角互补C.两点确定一条直线D.角平分线上的点到这个角的两边的距离相等5.如图,在中,,于点,,,则的度数为()A. B. C. D.6.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.7.下列命题是假命题的是()A.直角都相等 B.对顶角相等 C.同位角相等 D.两点之间,线段最短8.下列图形中对称轴只有两条的是()A. B. C. D.9.如图,在△ABC与△EMN中,,,∠C=∠M=54°,若∠A=66°,则下列结论正确的是()A. B.EN=a C.∠E=60° D.∠N=66°10.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=6cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定二、填空题(每小题3分,共24分)11.若,,则代数式的值为__________.12.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段横穿双向行驶车道,其中米,在绿灯亮时,小明共用12秒通过,其中通过的速度是通过速度的1.5倍,求小明通过时的速度.设小明通过时的速度是米/秒,根据题意列方程得:______.
13.如图1,将边长为a的大正方形剪去一个边长为b的小正方形(ab),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为_________________.14.如果点(,)关于x轴的对称点在第四象限内,则m的取值范围是________.15.在平面直角坐标系中,点关于轴的对称点是__________.16.计算:|-2|=______.17.如图,,,垂足分别为,,,,点为边上一动点,当_______时,形成的与全等.18.已知一次函数,若y随x的增大而减小,则的取值范围是___.三、解答题(共66分)19.(10分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.20.(6分)先化简,再求值,其中a=1.21.(6分)齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次被抽取的学生共有_______名;(2)请补全条形图;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;(4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(8分)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,(1)求D、E两点的坐标.(2)求过D、E两点的直线函数表达式23.(8分)已知,如图,在三角形中,是边上的高.尺规作图:作的平分线(保留作图痕迹,不写作法,写出结论)﹔在已作图形中,若与交于点,且,求证:.24.(8分)解方程:(1)计算:(2)计算:(3)解方程组:25.(10分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…(1)第④个等式为;(2)根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.26.(10分)小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)
参考答案一、选择题(每小题3分,共30分)1、B【分析】检查四名同学的结论,找出错误的步骤即可.【详解】出现错误的是乙,正确结果为:,故选:B.【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.2、C【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b,即可确定出三角形形状.【详解】已知等式变形得:(a+b)(a-b)-c(a-b)=0,即(a-b)(a+b-c)=0,∵a+b-c≠0,∴a-b=0,即a=b,则△ABC为等腰三角形.故选C.【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.3、C【分析】本题根据所给的条件得知,△ABC是直角三角形,再根据三角形的面积相等即可求出BC边上的高.【详解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90°,则由面积公式可知,S△ABC=ABAC=BCAD,∴AD=.故选C.【点睛】本题考查了勾股定理的逆定理,需要先证得三角形为直角三角形,再利用三角形的面积公式求得AD的值.4、B【解析】试题分析:A.对顶角相等,所以A选项为真命题;B.两直线平行,同旁内角互补,所以B选项为假命题;C.两点确定一条直线,所以C选项为真命题;D.角平分线上的点到这个角的两边的距离相等,所以D选项为真命题.故选B.考点:命题与定理.5、D【分析】根据角平分线的判定可知,BD平分∠ABC,根据已知条件可求出∠A的度数.【详解】解:∵,,且∴是的角平分线,∴,∴,∴在中,,故答案选D.【点睛】本题主要考查角平分线的判定及三角形角度计算问题,理解角平分线的判定条件是解题的关键.6、B【解析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B7、C【解析】根据真假命题的概念,可知直角都相等是真命题,对顶角相等是真命题,两点之间,线段最短,是真命题,同位角相等的前提是两直线平行,故是假命题.故选C.8、C【分析】根据对称轴的定义,分别找出四个选项的中的图形的对称轴条数,即可得到答案.【详解】圆有无数条对称轴,故A不是答案;等边三角形有三条对称轴,故B不是答案;长方形有两条对称轴,故C是答案;等腰梯形只有一条对称轴,故D不是答案.故C为答案.【点睛】本题主要考查了对称轴的基本概念(如果沿着某条直线对折,对折的两部分是完全重合的,那么这条直线就叫做这个图形的对称轴),熟记对称轴的概念是解题的关键.9、A【分析】利用,,∠C=∠M=54°证明与全等,利用全等三角形的性质可得到答案.【详解】解:在与中,所以:所以B,C,D,都错误,A正确.故选A.【点睛】本题考查三角形全等的判定,掌握三角形全等的判定方法是关键.10、B【分析】由题意直接根据全等三角形的性质进行分析即可得出答案.【详解】解:∵△ABC≌△BAD,AB=6cm,BD=6cm,AD=5cm,∴BC=AD=5cm.故选:B.【点睛】本题考查全等三角形的性质,全等三角形的对应边相等;全等三角形的对应角相等,找到全等三角形的对应边是解题的关键.二、填空题(每小题3分,共24分)11、-12【解析】分析:对所求代数式进行因式分解,把,,代入即可求解.详解:,,,故答案为点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.12、【解析】设小明通过AB时的速度是x米/秒,根据题意列出分式方程解答即可.【详解】解:设小明通过AB时的速度是x米/秒,由共用12秒通过可得:.故答案为:.【点睛】此题考查由实际问题抽象分式方程,关键是根据题意列出分式方程解答.13、【解析】图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2−b2;图(2)中阴影部分为梯形,其上底为2b,下底为2a,高为(a-b)则其面积为(a+b)(a−b),∵前后两个图形中阴影部分的面积,∴.故答案为.14、【分析】利用关于轴对称点的性质可知点P在第一象限,由此根据第一象限点的坐标的特征列不等式组即可解答.【详解】∵点P(,)关于轴的对称点在第四象限内,∴点P(,)在第一象限,∴,解得:.故答案为:.【点睛】本题主要考查了关于轴对称点的性质以及象限内点的坐标特点,正确记忆各象限内点的坐标符号是解题关键.15、【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:∵点,∴与点P关于x轴对称的点的坐标为,故答案为:.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.16、0【分析】先化简绝对值,以及求立方根,然后相减即可.【详解】解:;故答案为0.【点睛】本题考查了立方根和绝对值的定义,解题的关键是正确进行化简.17、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=6可得CP=4,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】解:当BP=1时,Rt△ABP≌Rt△PCD,∵BC=6,BP=1,∴PC=4,∴AB=CP,∵AB⊥BC、DC⊥BC,∴∠B=∠C=90°,在△ABP和△PCD中,∴△ABP≌△PCD(SAS),故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.18、k<1.【分析】一次函数y=kx+b,当k<0时,y随x的增大而减小.据此列不等式解答即可.【详解】解:∵一次函数y=(k-1)x+2中y随x的增大而减小,
∴k-1<0,
解得k<1,
故答案是:k<1.【点睛】本题主要考查了一次函数的增减性.一次函数y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.三、解答题(共66分)19、(1)∠ECD=36°;(2)BC长是1.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=1.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.20、,【分析】通过因式分解进行分式化简,然后将数值代入便可得.【详解】解:原式=当a=1时,原式=.【点睛】通过因式分解进行分式的化简为本题的关键.21、(1)100(2)见解析(3)(4)1200【解析】(1)本次被抽取的学生共(名);(2)(名),据此补全;(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:(名).【详解】解:(1)本次被抽取的学生共(名),故答案为;(2)(名),补全条形图如下:(3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角,故答案为;(4)该校对于扎龙自然保护区“十分了解”和“了解较多”的学生:(名),答:该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共名.【点睛】本题主要考查条形图的有关知识,这是中考的热点问题,也是必考点.22、(3)D(0,3);E(4,8).(3).【详解】试题分析:(3)先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.(3)由(3)知D、E的坐标,根据待定系数法即可求得表达式.试题解析:(3)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=30,AB=8,BE==6,∴CE=4,∴E(4,8).在Rt△DCE中,DC3+CE3=DE3,又∵DE=OD,∴(8-OD)3+43=OD3,∴OD=3,∴D(0,3),综上D点坐标为(0,3)、E点坐标为(4,8).(3)由(3)得:E(4,8).D(0,3),设直线DE的解析式为y=mx+n,∴,解得,∴直线DE的解析式为y=x+3.考点:3.翻折变换(折叠问题);3.坐标与图形性质.23、(1)见详解;(2)见详解.【分析】(1)按照题目要求作图即可;(2)过点E作EH⊥AB于H,先证明△BDE≌△BHE,再证明△BOE≌△ADC,然后可得DE=
DC,可推出HE=
CD,根据AD=BD,∠ADB=90°,HE⊥AB,可得∠BAD
=
45°,∠HEA=∠HAE=
45°,可推出HE=
AH
=
CD,即可证明结论.【详解】(1)∠ABC的角平分线如图所示:;(2)如图,过点E作EH⊥AB于H,∵BE平分∠ABC,EH⊥AB,ED⊥ВC,∴EH⊥АВ,ED⊥BC,∴EH
=
ED,在Rt△BDE和Rt△BHE中,∴△BDE≌△BHE(HL),∵ВH
=
BD,在Rt△BDE和Rt△ADC中,∴△BOE≌△ADC(HL),∴DE=
DC,∴HE=
CD,∵AD=BD,∠ADB=90°,∴∠BAD
=
45°,∵HE⊥AB,∴∠HEA=∠HAE=
45°,∴HE=
AH
=
CD,∴BC
=
BD+CD=
BH
+
AH=
AB.【点睛】本题考查了全等三角形的判定和性质及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省广安市(2024年-2025年小学五年级语文)部编版期末考试((上下)学期)试卷及答案
- 2025年通信安全员ABC证模拟试题
- 航空电子过程管理 航空航天合格电子元件(AQEC)第1部分:集成电路和分立半导体 征求意见稿
- 第三章+第三节+幼儿情绪和情感的发展2(课件)-《幼儿心理学》(人教版第二版)
- 绩效考核方案
- 2024年度国家公务员考试公共基础知识复习试卷及答案(共四套)
- 2024年度安全生产知识竞赛题库及答案(430题)
- 171电流与电压和电阻的关系
- 2024解除租房合同协议范本范文
- 商业综合体改造追加协议
- 江苏省南京市鼓楼区+2023-2024学年九年级上学期期中物理试题(有答案)
- 老年友善医院创建汇报
- 垃圾制氢工艺流程
- 素描教案之素描基础
- 2024-2030年中国丝苗米行业发展趋势及发展前景研究报告
- 2023-2024学年广西南宁市高一年级上册期中考试数学质量检测模拟试题(含解析)
- 《行政复议法》讲座课件-2024鲜版
- 股份期权协议
- 战场防护基本知识课件
- GB/T 43829-2024农村粪污集中处理设施建设与管理规范
- 《现代控制理论》课程教学大纲
评论
0/150
提交评论