![2023-2024学年江苏无锡市锡中学实验学校数学八上期末预测试题含解析_第1页](http://file4.renrendoc.com/view11/M02/27/31/wKhkGWV9GjKAai8_AAHa7CgkxYw614.jpg)
![2023-2024学年江苏无锡市锡中学实验学校数学八上期末预测试题含解析_第2页](http://file4.renrendoc.com/view11/M02/27/31/wKhkGWV9GjKAai8_AAHa7CgkxYw6142.jpg)
![2023-2024学年江苏无锡市锡中学实验学校数学八上期末预测试题含解析_第3页](http://file4.renrendoc.com/view11/M02/27/31/wKhkGWV9GjKAai8_AAHa7CgkxYw6143.jpg)
![2023-2024学年江苏无锡市锡中学实验学校数学八上期末预测试题含解析_第4页](http://file4.renrendoc.com/view11/M02/27/31/wKhkGWV9GjKAai8_AAHa7CgkxYw6144.jpg)
![2023-2024学年江苏无锡市锡中学实验学校数学八上期末预测试题含解析_第5页](http://file4.renrendoc.com/view11/M02/27/31/wKhkGWV9GjKAai8_AAHa7CgkxYw6145.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏无锡市锡中学实验学校数学八上期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是(
)A.两点之间,线段最短 B.垂线段最短C.三角形具有稳定性 D.两直线平行,内错角相等2.一项工程,甲单独做要x天完成,乙单独做要y天完成,则甲、乙合做完成工程需要的天数为()A. B. C. D.3.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=110°,则∠ACB的度数为()A.40° B.35° C.60° D.70°4.若分式有意义,则的取值范围是()A. B. C. D.5.下列图案是轴对称图形的是()A. B. C. D.6.如图,中,,,在直线或上取一点,使为等腰三角形,则符合条件的点共有()A.个 B.个 C.个 D.个7.下列说法不正确的是()A.一组邻边相等的矩形是正方形 B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形 D.有一个角是直角的平行四边形是正方形8.分式有意义的条件是()A. B. C.且 D.9.在分式中,若,都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定10.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.19.19.19.1方差7.68.69.69.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁二、填空题(每小题3分,共24分)11.的立方根是____.12.若关于x的分式方程无解,则m的值是_____.13.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.14.如图,∠BAC=30°,点D为∠BAC内一点,点E,F分别是AB,AC上的动点.若AD=9,则△DEF周长的最小值为____.15.实数的相反数是__________.16.平面直角坐标系中,与点(4,-3)关于x轴对称的点是______.17.小明用S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.18.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________三、解答题(共66分)19.(10分)问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC是等边三角形,点D是BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线于点E.试探究AD与DE的数量关系.操作发现:(1)小明同学过点D作DF∥AC交AB于F,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD与DE的数量关系,并进行证明.类比探究:(2)如图2,当点D是线段BC上任意一点(除B、C外),其他条件不变,试猜想AD与DE之间的数量关系,并证明你的结论.拓展应用:(3)当点D在线段BC的延长线上,且满足CD=BC,在图3中补全图形,直接判断△ADE的形状(不要求证明).20.(6分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17=,12×14﹣6×20=,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.21.(6分)如图,点A、D、B、E在一条直线上,AD=BE,∠C=∠F,BC∥EF.求证:(1)△ABC≌DEF;(2)AC∥DF22.(8分)如图,已知:AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.(证明注明理由)23.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.24.(8分)如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.25.(10分)如图,四边形ABCD是直角梯形,AD∥BC,AB⊥AD,且AB=AD+BC,E是DC的中点,连结BE并延长交AD的延长线于G.(1)求证:DG=BC;(2)F是AB边上的动点,当F点在什么位置时,FD∥BG;说明理由.(3)在(2)的条件下,连结AE交FD于H,FH与HD长度关系如何?说明理由.26.(10分)如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数.(2)判断△ABE的形状并证明.(3)连结DE,若DE⊥BD,DE=6,求AD的长
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解:这样做的道理是三角形具有稳定性.故选C.2、A【解析】根据工程问题的关系:工作量=工作效率×工作时间,把总工作量看作单位“1”,可知甲的工作效率为,乙的工作效率为,因此甲乙合作完成工程需要:1÷(+)=.故选A.3、B【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°-∠BAD.【详解】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=55°,又∵∠AEC=90°,∴∠ACB=∠ACB'=35°,故选B.【点睛】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.4、C【分析】根据分式有意义时,即分式的分母不等于零解答即可.【详解】由题意得,∴,故选:C.【点睛】此题考查了分式有意义的条件:分式的分母不等于0,正确掌握分式有意义的条件是解题的关键.5、C【分析】根据轴对称图形的性质,分别进行判断,即可得到答案.【详解】解:根据题意,A、B、D中的图形不是轴对称图形,C是轴对称图形;故选:C.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.6、B【分析】分别以A为顶点、B为顶点、P为顶点讨论即可.【详解】以点A为圆心,AB为半径作圆,交AC于P1,P2,交BC与P3,此时满足条件的等腰△PAB有3个;以点B为圆心,AB为半径作圆,交AC于P5,交BC与P4,P6,此时满足条件的等腰△PAB有3个;作AB的垂直平分线,交BC于P7,此时满足条件的等腰△PAB有1个;∵,∴∠ABP3=60°,∵AB=AP3,∴△ABP3是等边三角形;同理可证△ABP6,△ABP6是等边三角形,即△ABP3,△ABP6,△ABP7重合,综上可知,满足条件的等腰△PAB有5个.故选B.【点睛】本题考查了等腰三角形的定义,等边三角形的判定,以及分类讨论的数学思想,分类讨论是解答本题的关键.7、D【解析】试题分析:有一个角是直角的平行四边形是矩形.考点:特殊平行四边形的判定8、A【分析】根据分式有意义的条件即可求出答案.【详解】根据题意得:x+1≠0,∴x≠﹣1.故选:A.【点睛】本题考查了分式有意义的条件,解答本题的关键是熟练运用分式有意义的条件,本题属于基础题型.9、A【分析】根据分式的基本性质:分式的分子和分母同时乘以(除以)同一个不为0的整式,分式的值不发生变化.【详解】解:故选:A.【点睛】本题主要考查的是分式的基本性质,掌握分式的基本性质以及正确的运算是解题的关键.10、D【分析】利用平均数和方差的意义进行判断.【详解】解:丁的平均数最大且方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.【点睛】本题考查平均数和方差在数据统计中的意义,理解掌握它们的意义是解答关键.二、填空题(每小题3分,共24分)11、.【分析】利用立方根的定义即可得出结论【详解】的立方根是.故答案为:【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.一个正数有两个平方根,并且它们是一对相反数.12、2【详解】解:去分母,得m﹣2=x﹣1,x=m﹣1.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=2,即m的值为2.故答案为2.13、240°【解析】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.14、1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF=EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.15、【分析】根据只有符号不同的两个数为互为相反数进行解答.【详解】解:根据相反数的定义,可得的相反数是.故答案为:.【点睛】此题主要考查了实数的性质,关键是掌握相反数的定义.16、(4,3).【解析】试题分析:由关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),可得:与点(4,-3)关于x轴对称的点是(4,3).考点:关于x轴、y轴对称的点的坐标.17、30【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.18、25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.三、解答题(共66分)19、(1)AD=DE,见解析;(2)AD=DE,见解析;(3)见解析,△ADE是等边三角形,【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(2)根据题意,通过平行线的性质及等边三角形的性质证明即可得解;(3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可.【详解】(1)如下图,数量关系:AD=DE.证明:∵是等边三角形∴AB=BC,∵DF∥AC∴,∠BDF=∠BCA∴∴是等边三角形,∴DF=BD∵点D是BC的中点∴BD=CD∴DF=CD∵CE是等边的外角平分线∴∵是等边三角形,点D是BC的中点∴AD⊥BC∴∵∴在与中∴∴AD=DE;(2)结论:AD=DE.证明:如下图,过点D作DF∥AC,交AB于F∵是等边三角形∴AB=BC,∵DF∥AC∴∴∴是等边三角形,∴BF=BD∴AF=DC∵CE是等边的外角平分线∴∵∠ADC是的外角∴∵∴∠FAD=∠CDE在与中∴∴AD=DE;(3)如下图,是等边三角形.证明:∵∴∵CE平分∴CE垂直平分AD∴AE=DE∵∴是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键.20、(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7,列式计算即可得出结论.【详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7则(x﹣1)·(x+1)﹣(x﹣7)·(x+7)===1.【点睛】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.21、(1)证明见解析;(2)证明见解析.【分析】(1)根据两直线平行,同位角相等,可求证∠CBA=∠FED,再根据线段和差关系证明AB=DE,然后利用AAS可判定△ABC≌△DEF.(2)利用全等三角形的性质可证得:∠A=∠EDF,然后根据同位角相等两直线平行可判定AC∥DF.【详解】(1)∵BC∥EF,∴∠CBA=∠FED,∵AD=BE,∴AB=DE,在△ABC和△DEF中,,∴△ABC≌△DEF,(2)∵△ABC≌△DEF,∴∠A=∠EDF,∴AC∥DF.22、见解析【分析】要证明EF平分∠BED,即证∠4=∠5,由平行线的性质,∠4=∠3=∠1,∠5=∠2,只需证明∠1=∠2,而这是已知条件,故问题得证.【详解】解:证明:∵AC∥DE,
∴∠BCA=∠BED,
即∠1+∠2=∠4+∠5,
∵AC∥DE,
∴∠1=∠3;
∵DC∥EF,
∴∠3=∠4;
∴∠1=∠4,
∴∠2=∠5;
∵CD平分∠BCA,
∴∠1=∠2,
∴∠4=∠5,
∴EF平分∠BED.【点睛】本题考查了角平分线的定义及平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)证明见解析;(2)△ACB≌△DCE,△EMC≌△BCN,△AON≌△DOM,△AOB≌△DOE.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形.【详解】(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD(SAS),∴AE=BD;(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC,∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL).24、(1)见解析;(2)6.【分析】(1)先以A为圆心,小于AC长为半径画弧,交AC,AB运用H、F;再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,最后画射线AM交CB于D;(2)过点D作DE⊥AB,垂足为E,先证明△ACD≌△AED得到AC=AE,CD=DE=3,再由勾股定理得求的BE长,然后在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,最后再次运用勾股定理求解即可.【详解】解:(1)如图:(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°∵AD平分∠BAC∴CD=DE在RtACD和RtAED中CD=DE,AD=AD∴△CDE≌△AED(HL)∴AC=AE,CD=DE=3在Rt△BDE中,由勾股定理得:DE2+BE2=BD2∴BE2=BD2-DE2=52-32=16.∴BE=4在Rt△ABC中,设AC=x,则AB=AE+BE=x+4.由勾股定理得:AC2+BC2=AB2,即x2+82=(x+4)2解得:x=6,即AC=6.【点睛】本题主要考查了作角平分线、以及角平分线的性质、勾股定理的应用、全等三角形的判定和性质.解题的关键在于作出角平分线并利用其性质证明三角形全等.25、(1)见解析;(2)当F运动到AF=AD时,FD∥BG,理由见解析;(3)FH=HD,理由见解析【分析】(1)证明△DEG≌△CEB(AAS)即可解决问题.(2)想办法证明∠AFD=∠ABG=45°可得结论.(3)结论:FH=HD.利用等腰直角三角形的性质即可解决问题.【详解】(1)证明:∵AD∥BC,∴∠DGE=∠CBE,∠GDE=∠BCE,∵E是DC的中点,即DE=CE,∴△DEG≌△CEB(AAS),∴DG=B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个体工商户合伙创业合同书及细则
- 临时劳动合同终止模板
- 个体出租车转让合同协议
- 专业版设备抵押合同范本大全
- 临时摊位租赁合同样本
- 中外技术合作开发合同
- 个人分期购车辆抵押借款协议合同
- 买卖居间合同模板6
- 中外合资物流企业合同标准文本
- XX省基础教育设施建设合同
- 2025保安部年度工作计划
- 2024年江苏经贸职业技术学院单招职业适应性测试题库
- 人居环境综合治理项目项目背景及必要性分析
- 招标采购基础知识培训
- 2024年广东省公务员录用考试《行测》试题及答案解析
- 电力系统分布式模型预测控制方法综述与展望
- 2024年注册建筑师-二级注册建筑师考试近5年真题附答案
- 2024年贵州省中考理科综合试卷(含答案)
- 无人机技术与遥感
- 燃煤电厂超低排放烟气治理工程技术规范(HJ 2053-2018)
- TSG-T7001-2023电梯监督检验和定期检验规则宣贯解读
评论
0/150
提交评论