版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年吉林省长春市汽车经济技术开发区八上数学期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10 B.8 C.6 D.42.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.43.在直角坐标系中,点与点关于轴对称,则点的坐标为()A. B. C. D.4.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)5.如图所示,在中,是边上的中线,,,,则的值为()A.3 B.4 C.5 D.66.直角三角形的两条边长分别是5和12,它的斜边长为()A.13 B. C.13或12 D.13或7.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.68.若分式有意义,则实数x的取值范围是()A.x=0 B.x=5 C.x≠5 D.x≠09.估计的运算结果应在()A.5到6之间 B.6到7之间 C.7到8之间 D.8到9之间10.分式方程的解是()A.x=1 B.x=2 C.x=0 D.无解.二、填空题(每小题3分,共24分)11.使分式有意义的x的范围是________
。12.如图,在平面直角坐标系中,的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x轴上有一点P,使得PA+PB的值最小,则点P的坐标为______________13.如图,将一块直角三角板放置在锐角上,使得该三角板的两条直角边、恰好分别经过、,若,则=_________.14.如图,是和的公共斜边,AC=BC,,E是的中点,联结DE、CE、CD,那么___________________.15.一列高铁列车从甲地匀速驶往乙地,一列特快列车从乙地匀速驶往甲地,两车同时出发,设特快列车行驶的时间为x(单位:时),特快列车与高铁列车之间的距离为y(单位:千米),y与x之间的函数关系如图所示,则图中线段CD所表示的y与x之间的函数关系式是_____.16.如图,中,,,,为边的垂直平分线DE上一个动点,则的周长最小值为________.17.当____________时,分式的值为零.18.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.三、解答题(共66分)19.(10分)已知港口A与灯塔C之间相距20海里,一艘轮船从港口A出发,沿AB方向以每小时4海里的速度航行,4小时到达D处,测得CD两处相距12海里,若轮船沿原方向按原速度继续航行2小时到达小岛B处,此时船与灯塔之间的距离为多少海里?20.(6分)“构造图形解题”,它的应用十分广泛,特别是有些技巧性很强的题目,如果不能发现题目中所隐含的几何意义,而用通常的代数方法去思考,经常让我们手足无措,难以下手,这时,如果能转换思维,发现题目中隐含的几何条件,通过构造适合的几何图形,将会得到事半功倍的效果,下面介绍两则实例:实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得,化简得:实例二:欧几里得的《几何原本》记载,关于x的方程的图解法是:画Rt△ABC,使∠ABC=90°,BC=,AC=,再在斜边AB上截取BD=,则AD的长就是该方程的一个正根(如实例二图)请根据以上阅读材料回答下面的问题:(1)如图1,请利用图形中面积的等量关系,写出甲图要证明的数学公式是,乙图要证明的数学公式是(2)如图2,若2和-8是关于x的方程x2+6x=16的两个根,按照实例二的方式构造Rt△ABC,连接CD,求CD的长;(3)若x,y,z都为正数,且x2+y2=z2,请用构造图形的方法求的最大值.21.(6分)已知:如图,在△ABC中,∠BAC=100°,AD⊥BC于D点,AE平分∠BAC交BC于点E.若∠C=28°,求∠DAE的度数.22.(8分)某学校共有个一样规模的大餐厅和个一样规模的小餐厅,经过测试,若同时开放个大餐厅个小餐厅,可供名学生就餐.若同时开放个大餐厅、个小餐厅,可供名学生就餐.求个大餐厅和个小餐厅分别可供多少名学生就餐?23.(8分)为庆祝2015年元且的到来,学校决定举行“庆元旦迎新年”文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少?24.(8分)为参加学校艺术节闭幕演出,八年级一班欲租用男、女演出服装若干套以供演出时使用,已知4套男装和6套女装租用一天共需租金490元,6套男装和10套女装租用一天共需790元.(1)租用男装、女装一天的价格分别是多少?(2)由于演出时间错开租用高峰时段,男装、女装一天的租金分别给予9折和8折优惠,若该班演出团由5名男生和12名女生组成,求在演出当天该班租用服装实际支付的租金是多少?25.(10分)在中,,,、分别是的高和角平分线.求的度数.26.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】延长AP交BC于E,根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC.【详解】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6.故选C.【点睛】本题考查了全等三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出全等三角形是解题的关键.2、C【分析】作DE⊥AB于E,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC,设DE=DC=x,利用等等面积法列方程、解方程即可解答.【详解】解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=1,即点D到AB边的距离为1.故答案为C.【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..3、B【解析】根据关于轴对称的点的坐标特点是横坐标相等,纵坐标相反确定点B的坐标.【详解】解:点与点关于轴对称,所以点B的坐标为,故选:B【点睛】本题考查了轴对称与坐标的关系,理解两点关于x或y轴对称的点的坐标变化规律是解题关键.4、C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.5、B【分析】首先过点A作AE⊥BC,交CB的延长线于E,由AE⊥BC,DB⊥BC,得出AE∥BD,由中位线的性质得出BC=BE,然后由∠ABC=120°,得出∠ABE=60°,∠BAE=30°,AB=2BE=2BC,即可得解.【详解】过点A作AE⊥BC,交CB的延长线于E,如图所示:∵AE⊥BC,DB⊥BC,∴AE∥BD,∵AD=CD,∴BD是△ACE的中位线,∴BC=BE,∵∠ABC=120°,∴∠ABE=60°,∴∠BAE=30°,∴AB=2BE=2BC,∵∴BC=4故答案为B.【点睛】此题主要考查平行线的判定与性质以及中位线的性质、特殊直角三角形的性质,熟练掌握,即可解题.6、A【分析】直接利用勾股定理即可解出斜边的长.【详解】解:由题意得:斜边长=,故选:A.【点睛】本题主要考查勾股定理,掌握勾股定理的基本运用是解答本题的关键.7、D【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.8、C【解析】根据分式有意义,分母不等于0列不等式求解即可.【详解】解:由题意得,x﹣1≠0,解得x≠1.故选:C.【点睛】本题主要考查分式有意义的条件:分母不为零,掌握分式有意义的条件是解题的关键.9、C【分析】先根据实数的混合运算化简,再估算的值即可.【详解】==.∵5<<6,∴7<<8故的运算结果应在7和8之间.故选:C.【点睛】本题考查了估算无理数的大小,其常见的思维方法:用有理数逼近无理数,求无理数的近似值.10、C【解析】分析:首先进行去分母将分式方程转化为整式方程,然后解一元一次方程,最后对方程的根进行检验.详解:去分母可得:x-2=2(x-1),解得:x=0,经检验:x=0是原方程的解,∴分式方程的解为x=0,故选C.点睛:本题主要考查的是解分式方程的方法,属于基础题型.去分母是解分式方程的关键所在,还要注意分式方程最后必须进行验根.二、填空题(每小题3分,共24分)11、x≠1【分析】根据分式有意义的条件可求解.【详解】分母不为零,即x-1≠0,x≠1.故答案是:x≠1.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12、(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴解得∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B关于x轴对称点D,确定点P位置是解题关键.13、50°【分析】根据三角形的内角和定理求出∠ABC+∠ACB的度数,再根据直角三角形两锐角互余的关系得到∠DBC+∠DCB=90°,由此即可得到答案.【详解】∵∠A+∠ABC+∠ACB=180°,,∴∠ABC+∠ACB=140°,∵∠BDC=90°,∴∠DBC+∠DCB=90°,∴=(∠ABC+∠ACB)-(∠DBC+∠DCB)=50°,故答案为:50°.【点睛】此题考查三角形的内角和定理,直角三角形两锐角互余的关系,所求角度不能求得每个角的度数时,可将两个角度的和求出,这是一种特殊的解题方法.14、1【分析】先证明A、C、B、D四点共圆,得到∠DCB与∠BAD的是同弧所对的圆周角的关系,得到∠DCB的度数,再证∠ECB=45°,得出结论.【详解】解:∵AB是Rt△ABC和Rt△ABD的公共斜边,E是AB中点,∴AE=EB=EC=ED,∴A、C、B、D在以E为圆心的圆上,∵∠BAD=32°,∴∠DCB=∠BAD=32°,又∵AC=BC,E是Rt△ABC的中点,∴∠ECB=45°,∴∠ECD=∠ECB-∠DCB=1°.故答案为:1.【点睛】本题考查直角三角形的性质、等腰三角形性质、圆周角定理和四点共圆问题,综合性较强.15、y=100x【分析】由函数图象可以直接得出甲、乙两地之间的距离为1200千米和特快列车走完全程的时间,就可以求出特快列车的速度,进而求出高铁列车的速度而得出C的坐标,由待定系数法求出结论.【详解】解:由函数图象得:甲、乙两地之间的距离为1200千米,特快列车速度为:1200÷12=100(千米/时),高铁列车与特快列车的速度和为1200÷3=400(千米/时),高铁列车的速度为:400﹣100=300(千米/时),∴高铁列车走完全程时间为1200÷300=4(小时),∴高铁列车到达时是在它俩相遇之后的1小时后,此时高铁列车与特快列车相距400千米,∴C(4,400).设线段CD的解析式为y=kx+b(k≠0,k、b为常数),把(4,400),(12,1200)代入y=kx+b中,有解得∴y=100x.故答案为:y=100x【点睛】本题主要考查一次函数的应用及待定系数法,能够读懂图象,掌握待定系数法是解题的关键.16、1【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点P和点E重合时,△ACP的周长最小,再结合题目中的已知条件求出AB的长即可.【详解】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点P和点E重合时,△ACP的周长最小,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=1cm,故答案为:1.【点睛】本题考查了轴对称−最短路线问题、垂直平分线的性质以及直角三角形的性质,正确确定P点的位置是解题的关键.17、-1【分析】分式的值为零时,分子等于零,分母不等于零,进行求解即可.【详解】解:∵分式的值为零,
∴.
解得:,所以当时,分式无意义,故舍去.综上所述,.
故答案为:-1.【点睛】考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.18、48°【分析】将BE与CD交点记为点F,由两直线平行同位角相等得出∠EFC度数,再利用三角形外角的性质可得答案.【详解】解:如图所示,将BE与CD交点记为点F,∵AB∥CD,∠B=75°,∴∠EFC=∠B=75°,又∵∠EFC=∠D+∠E,且∠E=27°,∴∠D=∠EFC﹣∠E=75°﹣27°=48°,故答案为:48°.【点睛】本题考查平行线的性质和三角形外角性质,解题的关键是掌握两直线平行,同位角相等这一性质.三、解答题(共66分)19、船与灯塔之间的距离为海里.【分析】先要利用勾股定理的逆定理证明出△ADC是Rt△,再推出△BDC是Rt△,最后利用勾股定理算出BC.【详解】在Rt△ACD中,AC=20,CD=12,∴AD=4×4=16,AC2=AD2+CD2,∴△ACD是直角三角形.∴△BDC是直角三角形,在Rt△CDB中,CD=12,DB=8,∴CB=.答:船与灯塔之间的距离为海里.【点睛】此题主要考查了勾股定理的应用,根据已知得出△CDB为直角三角形以及在直角三角形中求出CD的长是解题关键.20、(1)完全平方公式;平方差公式;(2);(3)【分析】(1)利用面积法解决问题即可;(2)如图2,作于点H,由题意可得出,利用面积求出的长,再利用勾股定理求解即可;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形,当时定值,z最小时,的值最大值.易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,据此求解即可.【详解】解:(1)图1中甲图大正方形的面积乙图中大正方形的面积即∴甲图要证明的数学公式是完全平方公式,乙图要证明的公式是平方差公式;故答案为:完全平方公式;平方差公式;(2)如图2,作于点H,根据题意可知,根据三角形的面积可得:解得:根据勾股定理可得:根据勾股定理可得:;(3)如图3,用4个全等的直角三角形(两直角边分别为x,y,斜边为z),拼如图正方形当时定值,z最小时,的值最大值易知,当小正方形的顶点是大正方形的中点时,z的值最小,此时,,∴的最大值为.【点睛】本题属于三角形综合题,考查了正方形的性质、解直角三角形、完全平方公式、平方差公式、勾股定理等知识点,解此题的关键是理解题意,会用面积法解决问题,学会数形结合的思想解决问题.21、12°【解析】先根据角平分线的定义求得∠EAC的度数,再由三角形外角的性质得出∠AED的度数,最后由直角三角形的性质可得结论.【详解】解:∵AE平分∠BAC,∴∠EAC===50°,∵∠C=28°,∴∠AED=∠C+∠EAC=28°+50°=78°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣78°=12°.故答案为:12°.【点睛】本题考查三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.22、1个大餐厅可供900名学生就餐,1个小餐厅可供300名学生就餐【分析】设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据开放3个大餐厅、2个小餐厅,可供3300名学生就餐,开放2个大餐厅、1个小餐厅,可供2100名学生就餐列方程组求解.【详解】解:设1个大餐厅可供x名学生就餐,1个小餐厅可供y名学生就餐,根据题意,得,解得:,答:1个大餐厅可供900名学生就餐,1个小餐厅可供300名学生就餐.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.23、乙种花束的单价是2.5元,甲、乙两种花束分别购买100个、160个【分析】设乙种花束的单价是x元,则甲种花束的单价为(1+20%)x元,根据用700元购进甲、乙两种花束共260朵,列方程求解.【详解】解:设乙种花束的单价是元,则甲种花束的单价为元,又根据甲种花束比乙种花束少用100元可知,甲种花束花了300元,乙种花束花了400元,由题意得,,解得:,经检验:是原分式方程的解.∴.∴买甲花束为:=100(个),乙种花束为(个).答:乙种花束的单价是2.5元,甲、乙两种花束各购买了100个、160个.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24、(1)40元,55元;(2)708元【分析】(1)设租用男装一天x元,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省太原市2024-2025学年高三上学期期末学业诊断语文试题 含答案
- 2025年中国地铁轻轨用大型铝合金型材市场调查研究报告
- 2025年中国井用潜水电泵市场调查研究报告
- 2025至2031年中国车床中心架行业投资前景及策略咨询研究报告
- 2025至2031年中国男宝胶囊行业投资前景及策略咨询研究报告
- 2025至2031年中国双面绒衫行业投资前景及策略咨询研究报告
- 二零二五宅基地使用权转让与土地承包合同2篇
- 二零二五年度离婚协议书范本:专业律师指导实现和平分手8篇
- 二零二五版学校宿舍楼周边门面房租赁管理协议2篇
- 2025版物业承包服务与社区文化活动策划合同3篇
- 垃圾处理厂工程施工组织设计
- 天疱疮患者护理
- 2023年四川省公务员录用考试《行测》真题卷及答案解析
- 机电一体化系统设计-第5章-特性分析
- 2025年高考物理复习压轴题:电磁感应综合问题(原卷版)
- 雨棚钢结构施工组织设计正式版
- 2025年蛇年新年金蛇贺岁金蛇狂舞春添彩玉树临风福满门模板
- 《建筑制图及阴影透视(第2版)》课件 4-直线的投影
- 2024年印度辣椒行业状况及未来发展趋势报告
- 2024-2030年中国IVD(体外诊断)测试行业市场发展趋势与前景展望战略分析报告
- 碎纸机设计说明书
评论
0/150
提交评论