2023-2024学年广安市重点中学八年级数学第一学期期末学业水平测试试题含解析_第1页
2023-2024学年广安市重点中学八年级数学第一学期期末学业水平测试试题含解析_第2页
2023-2024学年广安市重点中学八年级数学第一学期期末学业水平测试试题含解析_第3页
2023-2024学年广安市重点中学八年级数学第一学期期末学业水平测试试题含解析_第4页
2023-2024学年广安市重点中学八年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广安市重点中学八年级数学第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.满足下列条件的三角形中,不是直角三角形的是有()A.三内角之比为3:4:5 B.三边长的平方之比为1:2:3C.三边长之比为3:4:5 D.三内角比为1:2:32.若分式的值为0,则的值为()A.1 B.-1 C.1或-1 D.03.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,75.若,则下列式子错误的是()A. B. C. D.6.2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.0000016秒,将0.0000016用科学记数法表示为()A. B. C. D.7.某种商品的进价为80元,标价为100元,后由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,该种商品最多可打()A.九折 B.八折 C.七折 D.六折8.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°9.如图,点B,E,C,F在同一条直线上,AB=DE,要使△ABC≌△DEF,则需要再添加的一组条件不可以是()A.∠A=∠D,∠B=∠DEF B.BC=EF,AC=DFC.AB⊥AC,DE⊥DF D.BE=CF,∠B=∠DEF10.如图,在等腰中,,,点在边上,且,点在线段上,满足,若,则是多少?()A.9 B.12 C.15 D.1811.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.1 B.5 C.7 D.4912.下面有个汽车标致图案,其中不是轴对称图形为()A. B.C. D.二、填空题(每题4分,共24分)13.已知三角形的三边分别为a,b,c,其中a,b满足,那么这个三角形的第三边c的取值范围是____.14.已知等腰三角形的两边长分别为4和8,则它的周长是_______.15.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.16.如图,在中,,点在内,平分,连结,把沿折叠,落在处,交于,恰有.若,,则__________.17.已知直线y=kx+b,若k+b=-7,kb=12,那么该直线不经过第____象限;18.在平面直角坐标系中,点A的坐标是(4,0),点P在直线y=﹣x+m上,且AP=OP=4,则m的值为_____.三、解答题(共78分)19.(8分)利用乘法公式计算:20.(8分)如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,设运动时间为t秒,过点P作PE⊥AO交AB于点E.(1)求直线AB的解析式;(2)在动点P、Q运动的过程中,以B、Q、E为顶点的三角形是直角三角形,直按写出t的值;(3)设△PEQ的面积为S,求S与时间t的函数关系,并指出自变量t的取值范围.21.(8分)如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E,以下是小明的证明过程,请在括号里填写理由.证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)∴∠ACD=2∠2,∠ABC=2∠1(_______)∴∠A=2∠2﹣2∠1(_________)=2(∠2﹣∠1)(_________)=2∠E(等量代换)(2)如果∠A=∠ABC,求证:CE∥AB.22.(10分)已知直线经过点和,求该直线的解析式.23.(10分)“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:x2﹣4x+5=(x)2+;(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;(3)比较代数式:x2﹣1与2x﹣3的大小.24.(10分)在△ABC中,CA=CB=3,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)当PN∥BC时,判断△ACP的形状,并说明理由.(2)在点P滑动的过程中,当AP长度为多少时,△ADP≌△BPC,为什么?(3)在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请直接写出α的度数.25.(12分)一般地,若(且),则n叫做以a为底b的对数,记为,即.譬如:,则4叫做以3为底81的对数,记为(即=4).(1)计算以下各对数的值:,,.(2)由(1)中三数4、16、64之间满足的等量关系式,直接写出、、满足的等量关系式;(3)由(2)猜想一般性的结论:.(且),并根据幂的运算法则:以及对数的含义证明你的猜想.26.周末了,李芳的妈妈从菜市场买回来千克萝卜和千克排骨.请你通过列方程组求出这天萝卜、排骨的售价分别是多少(单位:元千克)?

参考答案一、选择题(每题4分,共48分)1、A【分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【详解】A、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为45°,60°,75°,故此三角形不是直角三角形;B、三边符合勾股定理的逆定理,所以是直角三角形;C、设三条边为,则有,符合勾股定理的逆定理,所以是直角三角形;D、设三个内角的度数为,根据三角形内角和公式,求得,所以各角分别为30°,60°,90°,所以此三角形是直角三角形;故选:A.【点睛】本题考查了三角形内角和定理和勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2、A【解析】根据分式的概念,分式有意义要求分母不为零,所以分式值为零,即分子为零即可.【详解】,,,故选:A.【点睛】考查分式的定义,理解定义以及有意义的条件是解题的关键.3、B【解析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.【点睛】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.4、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,故不是直角三角形,故此选项不符合题意;B、32+42=52,故是直角三角形,故此选项符合题意;C、42+52≠62,故不是直角三角形,故此选项不符合题意;D、52+62≠72,故不是直角三角形,故此选项不符合题意;故选B.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、B【分析】根据不等式的基本性质逐一判断即可.【详解】A.将不等式的两边同时减去3,可得,故本选项正确;B.将不等式的两边同时乘(-1),可得,再将不等式的两边同时加3,可得,故本选项错误;C.将不等式的两边同时加2,可得,所以,故本选项正确;D.将不等式的两边同时除以3,可得,故本选项正确.故选B.【点睛】此题考查的是不等式的变形,掌握不等式的基本性质是解决此题的关键.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000016=1.6×10-6.故选B.【点睛】科学计数法:绝对值大于10的数记成a×10n的形式,其中1≤|a|<10,n是正整数.7、A【分析】利润率不低于12.5%,即利润要大于或等于80×12.5%元,设商品打x折,根据打折之后利润率不低于12.5%,列不等式求解.【详解】解:设商品打x折,由题意得,100×0.1x−80≥80×12.5%,解得:x≥9,即商品最多打9折.故选:A.【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义是解题的关键.8、B【分析】先求出正五边形一个的外角,再求出内角度数,然后在四边形BCDG中,利用四边形内角和求出∠G.【详解】∵正五边形外角和为360°,∴外角,∴内角,∵BG平分∠ABC,DG平分正五边形的外角∠EDF∴,在四边形BCDG中,∴故选B.【点睛】本题考查多边形角度的计算,正多边形可先计算外角,再计算内角更加快捷简便.9、C【分析】根据全等三角形的判定方法逐项分析即可.【详解】解:A、∵,∴可用ASA判定两个三角形全等,故不符合题意;B、∵,∴根据SSS能判定两个三角形全等,故不符合题意;C、由AB⊥AC,DE⊥DF可得∠A=∠D,这样只有一对角和一对边相等,无法判定两个三角形全等,故符合题意;D、由BE=CF可得BC=EF,∵,∴根据SAS可以证明三角形全等,故不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角.10、C【分析】先依题意可得ADC与ABC面积比为3:4,再证明ABE≌CAF,即可得出ABE与CDF的面积之和为ADC的面积,问题解决.【详解】解:∵ABC为等腰三角形∴AB=AC∵∴∵ABC与ADC分别以BC和DC为底边时,高相等∴ADC与ABC面积比为3:4∵∴∵∴∠BEA=∠AFC∵∠BED=∠ABE+∠BAE,∠BAE+∠CAF=∠BAC,∴∠ABE=∠CAF∴在ABE与CAF∴ABE≌CAF(AAS)∴ABE与CAF面积相等∴故选:C.【点睛】本题主要考查了三角形全等的判定与性质以及三角形面积求法,熟练掌握全等三角形面积相等以及高相等的两个三角形的面积的比等于底边的比是解题关键.11、B【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,

∴BD=CD=BC=3,AD同时是BC上的高线,

∴AB=.

故它的腰长为1.

故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.12、C【分析】根据轴对称图形的定义以及性质进行判断即可.【详解】A.属于轴对称图形,正确;B.属于轴对称图形,正确;C.不属于轴对称图形,错误;D.属于轴对称图形,正确;故答案为:C.【点睛】本题考查了轴对称图形的问题,掌握轴对称图形的定义以及性质是解题的关键.二、填空题(每题4分,共24分)13、【解析】根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.【详解】∵,∴=0,b-4=0,∴a=3,b=4,∴4-3<c<4+3,即.故答案是:.【点睛】考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.14、1【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=1.故答案为:1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.16、【解析】如图(见解析),延长AD,交BC于点G,先根据等腰三角形的三线合一性得出,再根据折叠的性质、等腰三角形的性质(等边对等角)得出,从而得出是等腰直角三角形,然后根据勾股定理、面积公式可求出AC、CE、CF的长,最后根据线段的和差即可得.【详解】如图,延长AD,交BC于点G平分,,且AG是BC边上的中线由折叠的性质得,即,即是等腰直角三角形,且在中,由三角形的面积公式得即,解得故答案为:.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.17、一【分析】根据k+b=-7,kb=12,判断k及b的符号即可得到答案.【详解】∵kb=12,∴k、b同号,∵k+b=-7,∴k、b都是负数,∴直线y=kx+b经过二、三、四象限,故答案为:一.【点睛】此题考查一次函数的性质,当k一次函数经过一、三象限,当k0时,图象经过二、四象限;当b图象交y轴于正半轴,当b0时,图象交y轴于负半轴.18、2+2或2﹣2.【分析】易知点P在线段OA的垂直平分线上,那么就能求得△AOP是等边三角形,就能求得点P的横坐标,根据勾股定理可求得点P的纵坐标.把这点代入一次函数解析式即可,同理可得到在第四象限的点.【详解】由已知AP=OP,点P在线段OA的垂直平分线PM上.∴OA=AP=OP=1,∴△AOP是等边三角形.如图,当m≥0时,点P在第一象限,OM=2,OP=1.在Rt△OPM中,PM=,∴P(2,2).∵点P在y=﹣x+m上,∴m=2+2.当m<0时,点P在第四象限,根据对称性,P′(2,﹣2).∵点P′在y=﹣x+m上,∴m=2﹣2.则m的值为2+2或2﹣2.故答案为:2+2或2﹣2.【点睛】本题考查了一次函数解析式的问题,掌握解一次函数解析式的方法是解题的关键.三、解答题(共78分)19、【分析】根据乘法分配律的逆运算进行计算,即可得到答案.【详解】解:===;【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.20、(1)y=﹣2x+1(2)2或(3)S=t2﹣t(2<t≤1)【分析】(1)依据待定系数法即可求得;(2)根据直角三角形的性质解答即可;(3)有两种情况:当0<t<2时,PF=1﹣2t,当2<t≤1时,PF=2t﹣1,然后根据面积公式即可求得;【详解】(1)∵C(2,1),∴A(0,1),B(2,0),设直线AB的解析式为y=kx+b,∴,解得,∴直线AB的解析式为y=﹣2x+1.(2)当以B、Q、E为顶点的三角形是直角三角形时,P、E、Q共线,此时t=2,当以B、Q、E为顶点的三角形是直角三角形时,EQ⊥BE时,此时t=;(3)如图2,过点Q作QF⊥y轴于F,∵PE∥OB,∴,∵AP=BQ=t,∴PE=t,AF=CQ=1﹣t,当0<t<2时,PF=1﹣2t,∴S=PE•PF=×t(1﹣2t)=t﹣t2,即S=﹣t2+t(0<t<2),当2<t≤1时,PF=2t﹣1,∴S=PE•PF=×t(2t﹣1)=t2﹣t(2<t≤1).【点睛】本题考查了待定系数法求解析式,平行线的性质,以及三角形的面积公式的应用,灵活运用相关知识,学会用分类讨论的思想思考问题是解题的关键.21、(1)见解析;(2)证明见解析.【解析】(1)根据角平分线的性质以及三角形外角的性质即可求证;(2)由(1)可知:∠A=2∠E,由于∠A=∠ABC,∠ABC=2∠ABE,所以∠E=∠ABE,从而可证AB∥CE.【详解】解:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质),∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质),∴∠A=2∠2﹣2∠1(等量代换),=2(∠2﹣∠1)(提取公因数),=2∠E(等量代换);(2)由(1)可知:∠A=2∠E∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE,∴AB∥CE.【点睛】本题考查三角形的综合问题,涉及平行线的判定,三角形外角的性质,角平分线的性质,需要学生灵活运用所学知识.22、【分析】已知直线经过点和,利用待定系数法即可求得直线解析式.【详解】解:设把,代入得:,解得∴该直线的解析式为故答案为:【点睛】本题考查了用待定系数法求一次函数解析式,已知直线上两点坐标即可用待定系数法求出一次函数解析式.23、(1)﹣2,1;(2)1;(2)x2﹣1>2x﹣2【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x、y的值,再求x+y的值;(2)将两式相减,再配方即可作出判断.【详解】解:(1)x2﹣4x+5=(x﹣2)2+1;(2)x2﹣4x+y2+2y+5=0,(x﹣2)2+(y+1)2=0,则x﹣2=0,y+1=0,解得x=2,y=﹣1,则x+y=2﹣1=1;(2)x2﹣1﹣(2x﹣2)=x2﹣2x+2=(x﹣1)2+1,∵(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2﹣1>2x﹣2.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.24、(1)直角三角形,理由见解析;(2)当AP=3时,△ADP≌△BPC,理由见解析;(3)当α=45°或90°或0°时,△PCD是等腰三角形【分析】(1)由PN与BC平行,得到一对内错角相等,求出∠ACP为直角,即可得证;

(2)当AP=3时,△ADP与△BPC全等,理由为:根据CA=CB,且∠ACB度数,求出∠A与∠B度数,再由外角性质得到∠α=∠APD,根据AP=BC,利用ASA即可得证;

(3)点P在滑动时,△PCD的形状可以是等腰三角形,分三种情况考虑:当PC=PD;PD=CD;PC=CD,分别求出夹角α的大小即可.【详解】(1)当PN∥BC时,∠α=∠NPM=30°,又∵∠ACB=120°,∴∠ACP=120°-30°=90°,∴△ACP是直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论