版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市宜春中学2023-2024学年高一数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.函数(其中为自然对数的底数)的图象大致为()A. B.C. D.2.已知角的终边经过点,则A. B.C.-2 D.3.表面积为24的正方体的顶点都在同一个球面上,则该球的表面积是A. B.C. D.4.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增5.已知函数的图象关于直线对称,则=A. B.C. D.6.在区间上单调递减的函数是()A. B.C. D.7.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}8.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.9.三条直线,,相交于一点,则的值是A.-2 B.-1C.0 D.110.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-611.已知命题p:“”,则为()A. B.C. D.12.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.二、填空题(本大题共4小题,共20分)13.无论取何值,直线必过定点__________14.已知向量,,若,则与的夹角为______15.____16.已知在同一平面内,为锐角,则实数组成的集合为_________三、解答题(本大题共6小题,共70分)17.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.18.已知集合,(1)当时,求集合;(2)若,“”是“”的充分条件,求实数的取值范围19.黄山市某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足关系:.肥料成本投入为元,其它成本投入(如培育管理,施肥等人工费)元.已知这种水果的市场售价为15元/千克,且销路畅通供不应求,记该水果树的单株利润为(单位:元).(1)求的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?20.设函数(且)是定义域为R的奇函数(Ⅰ)求t的值;(Ⅱ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由21.命题p:方程x2+x+m=0有两个负数根;命题q:任意实数x∈R,mx2-2mx+1>0成立;若p与q都是真命题,求m取值范围.22.已知二次函数.(1)求的对称轴;(2)若,求的值及的最值.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】由为偶函数,排除选项B、D,又,排除选项C,从而即可得答案.【详解】解:令,因为,且定义域为,所以为偶函数,所以排除选项B、D;又,所以排除选项C;故选:A.2、B【解析】按三角函数的定义,有.3、A【解析】根据正方体的表面积,可求得正方体的棱长,进而求得体对角线的长度;由体对角线为外接球的直径,即可求得外接球的表面积【详解】设正方体的棱长为a因为表面积为24,即得a=2正方体的体对角线长度为所以正方体的外接球半径为所以球的表面积为所以选A【点睛】本题考查了立体几何中空间结构体的外接球表面积求法,属于基础题4、B【解析】根据给定的对应值表,逐一分析各选项即可判断作答.【详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B5、C【解析】因为函数的图象关于直线对称,所以,即,因此,选C.6、C【解析】依次判断四个选项的单调性即可.【详解】A选项:增函数,错误;B选项:增函数,错误;C选项:当时,,为减函数,正确;D选项:增函数,错误.故选:C.7、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解8、D【解析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【点睛】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题9、B【解析】联立两条已知直线求得交点坐标,待定系数即可求得参数值.【详解】联立与可得交点坐标为,又其满足直线,故可得,解得.故选:.10、D【解析】首先根据题意得到,再根据的奇偶性求解即可.【详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D11、C【解析】根据命题的否定的定义判断【详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C12、B【解析】所以,所以。故选B。二、填空题(本大题共4小题,共20分)13、【解析】直线(λ+2)x﹣(λ﹣1)y+6λ+3=0,即(2x+y+3)+λ(x﹣y+6)=0,由求得x=﹣3,y=3,可得直线经过定点(﹣3,3)故答案为(﹣3,3)14、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:15、-1【解析】根据和差公式得到,代入化简得到答案.【详解】故答案为:【点睛】本题考查了和差公式,意在考查学生的计算能力.16、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.三、解答题(本大题共6小题,共70分)17、(1).(2),的面积.【解析】(1)由可求出,再利用展开即可得出答案;(2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可.【详解】(1),,,;(2)由正弦定理可得,解得,由(1)可得:,,,,,又由余弦定理可得:,解得,在中,,,的面积.【点睛】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题.18、(1)(2)【解析】(1)先化简集合A,由解得集合,然后利用并集运算求解.(2)根据“”是“”的充分条件,转化为求解.【小问1详解】由得:,即,当时,,所以.【小问2详解】因为,所以,由“”是“”的充分条件,则,则,实数的取值范围是.19、(1)f(2)当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元【解析】(1)用销售收入减去成本求得的函数关系式.(2)结合二次函数的性质、基本不等式来求得最大利润以及此时对应的施肥量.小问1详解】由已知得:,故fx【小问2详解】若,则,此时,对称轴为,故有最大值为.若,则,当且仅当,即时等号成立,此时,有最大值为,综上有,有最大值为750,∴当施用肥料为5千克时,该水果树的单株利润最大,最大利润是750元.20、(Ⅰ)t=2,(Ⅱ)不存在【解析】(Ⅰ)由题意f(0)=0,可求出t的值;(Ⅱ)假设存在正数符合题意,由函数的图象过点可得,得到的解析式,设,得到关于的解析式,然后对值进行讨论,看是否有满足条件的的值.【详解】解:(Ⅰ)因为f(x)是定义域为R的奇函数,∴f(0)=0,∴t=2,经检验符合题意,所以;(Ⅱ)假设存在正数符合题意,因为函数的图象过点,所以,解得,则,设,则,因为,所以,记,,函数在上的最大值为0,∴(ⅰ)若,则函数在有最小值为1,对称轴,∴,所以,故不合题意;(ⅱ)若,则函数在上恒成立,且最大值为1,最小值大于0,①,又此时,又,故无意义,所以应舍去;②,无解,综上所述:故不存在正数,使函数在上的最大值为021、【解析】根据判别式以及韦达定理即可求解.【详解】对于有两个负数根(可以为重根),即,并且由韦达定理,∴;对于恒成立,当时,符合题意;当时,则必定有且,得,所以;若p与q都是真命题,则.22、(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生产流程再造之路
- 色彩魔法课堂
- 硕士之旅:理论探索与实践
- 增材制造与创新设计:从概念到产品 课件 第4、5章 增材制造前处理及工艺规划、增材制造后处理及经验总结
- 农业盛季财务透析
- 垃圾分类你我共建
- 迈向明日启航梦想
- 外汇质押合同(2篇)
- 2024深圳二手房购房定金及房屋维修保养服务合同3篇
- 标准格式离婚协议书
- 2024年大学试题(宗教学)-佛教文化笔试考试历年高频考点试题摘选含答案
- 七年级语文下册专项练习知识(对联)
- 三年级下册语文必背古诗词
- 老年人谵妄中西医结合诊疗专家共识
- 团餐食品安全年度汇报
- 华西解剖学课件绪论和骨学总论
- 2024平安保险测评题库
- 膀胱癌诊断治疗指南
- 窗帘方案模板
- 僵尸企业注销工作总结范文
- 人教版五年级上册数学脱式计算练习200题及答案
评论
0/150
提交评论