江西省抚州市临川实验学校重点班2023-2024学年高一上数学期末复习检测试题含解析_第1页
江西省抚州市临川实验学校重点班2023-2024学年高一上数学期末复习检测试题含解析_第2页
江西省抚州市临川实验学校重点班2023-2024学年高一上数学期末复习检测试题含解析_第3页
江西省抚州市临川实验学校重点班2023-2024学年高一上数学期末复习检测试题含解析_第4页
江西省抚州市临川实验学校重点班2023-2024学年高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川实验学校重点班2023-2024学年高一上数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知为钝角,且,则()A. B.C. D.2.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.3.若sin(),α是第三象限角,则sin()=()A. B.C. D.4.已知,都是正数,则下列命题为真命题的是()A.如果积等于定值,那么当时,和有最大值B.如果和等于定值,那么当时,积有最小值C.如果积等于定值,那么当时,和有最小值D.如果和等于定值,那么当时,积有最大值5.两平行直线l1:3x+2y+1=0与l2:6mx+4y+m=0之间的距离为A.0 B.C. D.6.已知,,则的值等于()A. B.C. D.7.函数的零点在A. B.C. D.8.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.“”是函数满足:对任意的,都有”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.已知全集,集合1,2,3,,,则A.1, B.C. D.3,12.设集合,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.________.14.函数的定义域为____15.已知的图象的对称轴为_________________16.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.三、解答题(本大题共6小题,共70分)17.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.18.求函数的定义域、值域与单调区间;19.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.20.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m方程.21.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元(1)写出年利润万元关于年销售量万部的函数解析式;(2)年销售量为多少万部时,利润最大,并求出最大利润.22.某学校对高一某班的名同学的身高(单位:)进行了一次测量,将得到的数据进行适当分组后(每组为左闭右开区间),画出如图所示的频率分布直方图.(1)求直方图中的值,估计全班同学身高的中位数;(2)若采用分层抽样的方法从全班同学中抽取了名身高在内的同学,再从这名同学中任选名去参加跑步比赛,求选出的名同学中恰有名同学身高在内的概率.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】先求出,再利用和角的余弦公式计算求解.【详解】∵为钝角,且,∴,∴故选:C【点睛】本题主要考查同角的平方关系,考查和角的余弦公式的应用,意在考查学生对这些知识的理解掌握水平.2、B【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.3、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.4、D【解析】根据基本不等式计算求出和的最小值与积的最大值,进而依次判断选项即可.【详解】由题意知,,A:,则,当且仅当时取到等号,所以有最小值,故A错误;B:,则,当且仅当时取到等号,所以有最大值,故B错误;C:,则,当且仅当时取到等号,所以有最小值,故C错误;D:,则,有,当且仅当时取到等号,所以有最大值,故D正确;故选:D5、C【解析】根据两平行直线的系数之间的关系求出,把两直线的方程中的系数化为相同的,然后利用两平行直线间的距离公式,求得结果.【详解】直线l1与l2平行,所以,解得,所以直线l2的方程为:,直线:即,与直线:的距离为:.故选:C【点睛】本题考查直线平行的充要条件,两平行直线间的距离公式,注意系数必须统一,属于基础题.6、B【解析】由题可分析得到,由差角公式,将值代入求解即可【详解】由题,,故选:B【点睛】本题考查正切的差角公式的应用,考查已知三角函数值求三角函数值问题7、B【解析】利用零点的判定定理检验所给的区间上两个端点的函数值,当两个函数值符号相反时,这个区间就是函数零点所在的区间.【详解】函数定义域为,,,,,因为,根据零点定理可得,在有零点,故选B.【点睛】本题考查函数零点的判定定理,本题解题的关键是看出函数在所给的区间上对应的函数值的符号,此题是一道基础题.8、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.9、B【解析】根据充分条件、必要条件的概念判断即可.【详解】若,则成立,即必要性成立,反之若,则不成立,所以“”是“”的必要不充分条件.故选:B.10、A【解析】当时,在上递减,在递减,且在上递减,任意都有,充分性成立;若在上递减,在上递增,任意,都有,必要性不成立,“”是函数满足:对任意的,都有”的充分不必要条件,故选A.11、C【解析】可求出集合B,然后进行交集的运算,即可求解,得到答案【详解】由题意,可得集合,又由,所以故选C【点睛】本题主要考查了集合的交集运算,其中解答中正确求解集合B,熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.12、C【解析】利用集合并集的定义,即可求出.【详解】集合,.故选:.【点睛】本题主要考查的是集合的并集的运算,是基础题.二、填空题(本大题共4小题,共20分)13、【解析】.考点:诱导公式.14、【解析】本题首先可以通过分式的分母不能为以及根式的被开方数大于等于来列出不等式组,然后通过计算得出结果【详解】由题意可知,解得或者,故定义域为【点睛】本题考查函数的定义域的相关性质,主要考查函数定义域的判断,考查计算能力,考查方程思想,是简单题15、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:16、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)利用点斜式求得过点A且平行于BC的直线方程.(2)根据中点坐标、线段AB的垂直平分线的斜率求得正确答案.【小问1详解】直线的斜率为,所以过点A且平行于BC的直线方程为.【小问2详解】线段的中点为,直线的斜率为,所以线段AB的垂直平分线的斜率为,所以线段AB的垂直平分线为.18、定义域为,值域为,递减区间为,递增区间为.【解析】由函数的解析式有意义列出不等式,可求得其定义域,由,结合基本不等式,可求得函数的值域,令,根据对勾函数的性质和复合函数的单调性的判定方法,可求得函数的单调区间.【详解】由题意,函数有意义,则满足且,因为方程,所以,解得,所以函数的定义域为又由,因为,所以,当且仅当时,即时,等号成立,所以,所以函数的值域为,令,根据对勾函数的性质,可得函数在区间上单调递减,在上单调递增,结合复合函数的单调性的判定方法,可得在上单调递减,在上单调递增.19、(1)见解析;(2)见解析.【解析】(1)根据线面平行的判定定理可证明平面;(2)根据面面垂直的判定定理即可证明平面平面.【详解】(1)证明:连结,在中,,分别是,的中点,为的中位线,.在,,分别是,的中点,是的中位线,,.平面,平面.(2)证明:,,,,,平面且面平面平面【点睛】本题主要考查直线与平面平行的判定和平面与平面垂直的判定,属于基础题型.20、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.21、(1);(2)年销售量为45万部时,最大利润为7150万元.【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果;(2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润.【详解】解:(1)依题意,生产万部手机,成本是(万元),故利润,而,故,整理得,;(2)时,,开口向下的抛物线,在时,利润最大值为;时,,其中,在上单调递减,在上单调递增,故时,取得最小值,故在时,y取得最大值而,故年销售量为45万部时,利润最大,最大利润为7150万元.【点睛】方法点睛:分段函数求最值时,需要每一段均研究最值,再比较出最终的最值.22、(1),中位数为(2)【解析】(1)利用频率分布直方图中所有矩形的面积之和为可求得的值,设中位数为,利用中位数左边的矩形面积之和为列等式可求得的值;(2)分析可知所抽取的名学生,身高在的学生人数为,分别记为、、,身高在的学生人数为,记为,列举出所有的基本事件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论