版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省通榆县第一中学2024届高一上数学期末检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知命题p:x为自然数,命题q:x为整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.若,,,,则()A. B.C. D.3.设全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,64.已知两条绳子提起一个物体处于平衡状态.若这两条绳子互相垂直,其中一条绳子的拉力为50,且与两绳拉力的合力的夹角为30°,则另一条绳子的拉力为()A.100 B.C.50 D.5.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件6.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.87.在下列区间中函数的零点所在的区间为()A. B.C. D.8.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.9.若,,则下列结论正确的是()A. B.C. D.a,b大小不确定10.已知集合,下列结论成立是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.向量与,则向量在方向上的投影为______12.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.13.已知则_______.14.函数的最小正周期是________.15.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________16.不等式的解集是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2020年春节前后,一场突如其来的新冠肺炎疫情在武汉出现并很快地传染开来(已有证据表明2019年10月、11月国外已经存在新冠肺炎病毒),对人类生命形成巨大危害.在中共中央、国务院强有力的组织领导下,全国人民万众一心抗击、防控新冠肺炎,疫情早在3月底已经得到了非常好的控制(累计病亡人数人),然而国外因国家体制、思想观念的不同,防控不力,新冠肺炎疫情越来越严重.疫情期间造成医用防护用品短缺,某厂家生产医用防护用品需投入年固定成本为万元,每生产万件,需另投入成本为.当年产量不足万件时,(万元);当年产量不小于万件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本)(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大?并求出利润的最大值18.已知方程(1)若方程表示一条直线,求实数的取值范围;(2)若方程表示的直线的斜率不存在,求实数的值,并求出此时的直线方程;(3)若方程表示的直线在轴上的截距为,求实数的值;(4)若方程表示的直线的倾斜角是45°,求实数的值19.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.20.根据下列条件,求直线的方程(1)求与直线3x+4y+1=0平行,且过点(1,2)的直线l的方程.(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.21.已知θ是第二象限角,,求:(1);(2)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据两个命题中的取值范围,分析是否能得到pq和qp【详解】若x为自然数,则它必为整数,即p⇒q但x为整数不一定是自然数,如x=-2,即qp故p是q的充分不必要条件故选:A.2、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.3、B【解析】由补集的定义分析可得∁U【详解】根据题意,全集U=1,2,3,4,5,6,7,8,9,而A=则∁U故选:B4、D【解析】利用向量的平行四边形法则求解即可【详解】如图,两条绳子提起一个物体处于平衡状态,不妨设,根据向量的平行四边形法则,故选:D5、B【解析】根据指数函数的性质求的解集,由充分、必要性的定义判断题设条件间的关系即可.【详解】由,则,所以“”是“”的充分不必要条件.故选:B6、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B7、A【解析】根据解析式判断函数单调性,再结合零点存在定理,即可判断零点所处区间.【详解】因为是单调增函数,故是单调增函数,至多一个零点,又,故的零点所在的区间为.故选:A.8、C【解析】令,求得,得到是奇函数,再令,证得在上递减判断.【详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C9、B【解析】根据作差比较法可得解.【详解】解:因为,所以故选:B.10、C【解析】利用集合的交、并、补运算进行判断.【详解】因为,所以,故A错;,故B错;,故D错.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】在方向上的投影为考点:向量的投影12、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.13、【解析】因为,所以14、【解析】直接利用三角函数的周期公式,求出函数的周期即可.【详解】函数中,.故答案为:【点睛】本题考查三角函数的周期公式的应用,是基础题.15、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线16、【解析】先利用指数函数的单调性得,再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)年产量为万件时,该厂在这一商品的生产中所获利润最大,利润的最大值为万元【解析】(1)由利润销售收入总成本写出分段函数的解析式即可;(2)利用配方法和基本不等式分别求出各段的最大值,再取两个中最大的即可.【详解】(1)当,时,当,时,(2)当,时,,当时,取得最大值(万元)当,时,当且仅当,即时等号成立即时,取得最大值万元综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元18、(1);(2);;(3);(4).【解析】(1)先令,的系数同时为零时得到,即得时方程表示一条直线;(2)由(1)知时的系数为零,方程表示的直线的斜率不存在,即得结果;(3)由(1)知的系数同为零时,直线在轴上的截距存在,解得截距构建关系,即解得参数m;(4)由(1)知,的系数为零时,直线的斜率存在,解得斜率构建关系式,解得参数m.【详解】解:(1)当,的系数不同时为零时,方程表示一条直线令,解得或;令,解得或所以,的系数同时为零时,故若方程表示一条直线,则,即实数的取值范围为;(2)由(1)知当时,,方程表示的直线的斜率不存在,此时直线方程为;(3)易知且时,直线在轴上的截距存在.依题意,令,得直线在轴上的截距,解得所以实数的值为;(4)易知且时,直线的斜率存在,方程即,故斜率为.因为直线的倾斜角是45°,所以斜率为1,所以,解得所以实数的值为19、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题20、(1)3x+4y-11=0(2)3x-y+2=0【解析】(1)设与直线平行的直线为,把点代入,解得即可;(2)由,解得两直线的交点坐标为,结合所求直线垂直于直线,可得所求直线斜率,利用点斜式即可得出.【详解】(1)由题意,设l的方程为3x+4y+m=0,将点(1,2)代入l的方程3+4×2+m=0,得m=-11,∴直线l的方程为3x+4y-11=0;(2)由,解得,两直线的交点坐标为,因为直线的斜率为所求直线垂直于直线,所求直线斜率,所求直线方程为,化为.【点睛】本题主要考查直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度房屋租赁转让协议包含物业管理条款
- 二零二五年度石材出口贸易合作合同2篇
- 2025年度木饰面产品研发、采购与市场拓展合同3篇
- 2021承德市高考英语信息匹配类、阅读类五月选练及答案7
- 2024年武汉市江岸区人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2021高考英语昆明市(三月)阅读类课外自练(11)及答案
- 浙江中小学教师培训管理平台
- 【KS5u原创】2021年理综生物试题7(解析版)
- AI驱动的个性化治疗方案生成系统
- 2025年度家居饰品销售定制合同范本3篇
- 2023初一语文现代文阅读理解及解析:《猫》
- 大四课件感染深部真菌病
- 就这样当班主任读书分享
- 《太上老君说五斗金章受生经》
- 东南大学医学三基考试外科选择题及答案
- TZJASE 005-2021 非道路移动柴油机械(叉车)排气烟度 检验规则及方法
- GB/T 31989-2015高压电力用户用电安全
- CB/T 749-1997固定钢质百叶窗
- 大佛顶首楞严经浅释
- 品牌(商标)授权书(中英文模板)
- 行动销售(最新版)课件
评论
0/150
提交评论