版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版数学八年级(上)作轴对称图形13.2.1利用轴对称变换设计美丽图案在一张半透明的纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.这时,右脚印和左脚印成轴对称。类似地,我们可由一个图形得到与它成轴对称的另一个图形,重复此过程,可得到美丽的图案.对称轴方向和位置发生变化时,得到的图形的方向和位置也发生变化.想一想1.左脚印和右脚印的形状、大小一样吗?2.是否左脚印上的任意一点都可以在右脚印上找到一个对称点?3.连接任意一对对应点的线段和对称轴有何关系?PP′1.由一个平面图形可以得到它关于一条直线L对称的图形,这个图形与原图形的()完全相同;2.新图形上的每一点,都是原图形上的某一点关于直线l的();3.连接任意一对对应点的线段被对称轴().
答一答形状和大小对称点垂直平分轴对称变换的特征是什么?想一想如果有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?A′AO
l试一试作法:
过点A作直线l的垂线垂足为点O,在垂线上截取OA′=OA.∴点A′就是点A关于直线l的对称点.
已知直线l和一个点A,如何画出点A关于直线l
的对称点A′?试一试作法:1.过点A作直线l
的垂线,垂足为点O,在垂线上截取
OA′=OA,点A′就是点A关于直线l的对称点;2.类似地,作出点B关于直线
l的对称点B′;3.连接A′B′.
l如何画线段AB关于直线l
的对称线段?∴线段A′B′即为所求。1.过点A作直线l的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线l的对称点;如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形。BACl作法:2.类似地,分别作出点B、C关于直线l的对称点B′、C′;A′B′C′O例13.连接、、.∴△即为所求。C′lABCC′如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.lABC变式1A′B′A′B′C′lACBB′A′lABCD如图,已知四边形ABCD和直线l,作出与四边形ABCD关于直线l对称的图形.变式2A′B′C′D′如图,已知五边形ABCDE和直线l,作出与五边形ABCDE关于直线l对称的图形.变式3B′C′D′A′lABCDEE′1.找点2.画点3.连线(确定图形中的一些特殊点);(画出特殊点关于已知直线的对称点);(连接对称点)。作已知图形关于已知直线对称的图形的一般步聚:我来总结练一练如图,把下列图形补成关于直线l对称的图形.小强从镜子中看到的电子表的读数如下图
,则电子表的实际读数是________。:下面的数据是某个时间经过轴对称变换而得来的,请问它表示的时间是多少?利用轴对称,可以设计出精美的图案。请欣赏下列美丽的图案,体会轴对称在现实生活中的应用。探究1.如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?AB分析:我们可以把管道L近似地看成是一直线,问题是要在L上找一点C,使AC与CB的和最小.2.如图,球台上有球A、B,若要将球A击向边MN仍后反弹到边NK再反弹击到球B,请你画出一条击球路线.ABMNK3.某班举行文艺晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,BO桌面摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中地理学期教学细则
- 关于CSR应急预案(3篇)
- 应急预案的装订(3篇)
- 活动月方案策划(3篇)
- 大足美食活动策划方案(3篇)
- 保安应急预案流程(3篇)
- 修复地坪施工方案(3篇)
- 回填岩石施工方案(3篇)
- 富平厨房施工方案(3篇)
- 商业综合体物业管理投标文案
- 维修工作计划模板范文
- DB13(J)-T 8401-2021 钢丝网片复合保温板应用技术标准
- 餐厅控烟制度管理制度
- 设计公司部门领导发言稿
- 深圳科技馆新馆展教工程常设展区整体展教方案
- 《重庆市北碚区高标准农田建设规划2021-2030年》
- T-CI 451-2024 构网型光伏变换器并网技术规范
- 《公路工程预算定额》(JTGT3832-2018)
- 粤港车牌合同模板
- 中级(监控类) 消防设施操作员理论考试题及答案
- 分体电动门培训课件
评论
0/150
提交评论