




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市一中2023年数学高一上期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个2.如图,四棱锥的底面为正方形,底面,则下列结论中不正确的是A.B.平面C.平面平面D.与所成的角等于与所成的角3.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.4.已知函数,,的零点依次为,则以下排列正确的是()A. B.C. D.5.已知直线,与平行,则的值是()A0或1 B.1或C.0或 D.6.设,,那么等于A. B.C. D.7.函数的定义域为()A.R B.C. D.8.过点且平行于直线的直线方程为()A. B.C. D.9.已知点A(2,0)和点B(﹣4,2),则|AB|=()A. B.2C. D.210.如果,那么()A. B.C. D.11.“”是“为第二象限角”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设,则等于A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.如果对任意实数x总成立,那么a的取值范围是____________.14.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.15.设x、y满足约束条件,则的最小值是________.16.函数的最小正周期是__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.某商品上市天内每件的销售价格(元)与时间(天)函数的关系是,该商品的日销售量(件)与时间(天)的函数关系是.(1)求该商品上市第天的日销售金额;(2)求这个商品的日销售金额的最大值.18.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.19.在密闭培养环境中,某类细菌的繁殖在初期会较快,随着单位体积内细菌数量的增加,繁殖速度又会减慢.在一次实验中,检测到这类细菌在培养皿中的数量(单位:百万个)与培养时间(单位:小时)的关系为:根据表格中的数据画出散点图如下:为了描述从第小时开始细菌数量随时间变化的关系,现有以下三种模型供选择:①,②,③(1)选出你认为最符合实际的函数模型,并说明理由;(2)利用和这两组数据求出你选择的函数模型的解析式,并预测从第小时开始,至少再经过多少个小时,细菌数量达到百万个20.已知.(1)若为第四象限角且,求的值;(2)令函数,,求函数的递增区间.21.已知函数是定义在R上的偶函数,当时,.(1)求函数的解析式;(2)画出函数的图像;(3)根据图像写出的单调区间和值域.22.已知集合,(1)当时,求;(2)若,求
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B2、D【解析】结合直线与平面垂直判定和性质,结合直线与平面平行的判定,即可【详解】A选项,可知可知,故,正确;B选项,AB平行CD,故正确;C选项,,故平面平面,正确;D选项,AB与SC所成的角为,而DC与SA所成的角为,故错误,故选D【点睛】考查了直线与平面垂直的判定和性质,考查了直线与平面平行的判定,考查了异面直线所成角,难度中等3、C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题4、B【解析】在同一直角坐标系中画出,,与的图像,数形结合即可得解【详解】函数,,的零点依次为,在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解5、C【解析】由题意得:或,故选C.考点:直线平行的充要条件6、B【解析】由题意得.选B7、B【解析】要使函数有意义,则需要满足即可.【详解】要使函数有意义,则需要满足所以的定义域为,故选:B8、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A9、D【解析】由平面两点的距离公式计算可得所求值.【详解】由点A(2,0)和点B(﹣4,2),所以故选:D【点睛】本题考查平面上两点间的距离,直接用平面上两点间的距离公式解决,属于基础题.10、D【解析】利用对数函数的单调性,即可容易求得结果.【详解】因为是单调减函数,故等价于故选:D【点睛】本题考查利用对数函数的单调性解不等式,属基础题.11、B【解析】利用辅助角公式及正弦函数的性质解三角形不等式,再根据集合的包含关系判断充分条件、必要条件即可;【详解】解:由,即,所以,,解得,,即,又第二象限角为,因为真包含于,所以“”是“为第二象限角”的必要不充分条件;故选:B12、D【解析】由题意结合指数对数互化确定的值即可.【详解】由题意可得:,则.本题选择D选项.【点睛】本题主要考查对数与指数的互化,对数的运算性质等知识,意在考查学生的转化能力和计算求解能力.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先利用绝对值三角不等式求出的最小值,进而求出a的取值范围.【详解】,当且仅当时等号成立,故,所以a的取值范围是.故答案为:14、①②③【解析】由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案【详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误综上正确结论的序号是①②③【点睛】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题15、-6【解析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【点睛】本题考查简单线性规划问题,属中档题16、【解析】根据正弦函数的最小正周期公式即可求解【详解】因为由正弦函数的最小正周期公式可得故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)750元;(2)元.【解析】(1)根据题目提供的函数关系式分别算出该商品上市第20天的销售价格和日销售量即可;(2)设日销售金额为元,则,分别讨论当时以及当时的情况即可【详解】解:(1)该商品上市第天的销售价格是元,日销售量为件.所以该商品上市第天的日销售金额是元.(2)设日销售金额为(元),则.当,时,取得最大值为(元),当,时,取得最大值为(元).所以第天时,这个商品的日销售金额最大,最大值为(元).18、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.19、(1),理由见解析;(2),至少再经过小时,细菌数量达到百万个【解析】(1)分析可知,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小.对比三个函数模型可得结论;(2)将所选的两点坐标代入函数解析式,求出参数值,可得出函数模型的解析式,再由,解该不等式即可得出结论.【小问1详解】解:依题意,所选函数必须满足三个条件:(ⅰ)定义域包含;(ⅱ)增函数;(ⅲ)随着自变量的增加,函数值的增长速度变小因为函数的定义域为,时无意义;函数随着自变量的增加,函数值的增长速度变大函数可以同时符合上述条件,所以应该选择函数【小问2详解】解:依题意知,解得,所以令,解得所以,至少再经过小时,细菌数量达到百万个20、(1);(2).【解析】(1)先利用诱导公式化简,再利用同角三角函数的基本关系求解,代入即得结果;(2)利用两角和的正弦公式的逆应用化简函数,再利用整体代入法,结合范围得到递增区间即可.【详解】解:(1),,,为第四象限角,;(2)由(1)知,故,令,得,又,函数的递增区间为.21、(1)(2)图像见解析(3)答案见解析【解析】(1)根据偶函数的性质即可求出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北碚中医院面试题及答案
- 热轧卷板生产线项目规划设计方案
- 2025年新城悦ai面试题库大全及答案
- 培养小学生对水墨画兴趣的教学策略
- 例谈中考复习函数大致图像教学实践与思考
- 2025年服装专业考试题及答案
- 民企引入国有战略投资者的动因与绩效分析
- 2025年乡宁中试题题库及答案
- 基于项目教学法的学前教育研究方法课程构建
- 基于教材的小学英语仿写教学实践探索
- 中石油笔试试题及答案
- 开发采购述职报告
- 上海市建设工程施工图设计文件勘察设计质量疑难问题汇编(2024 版)
- 标准化电子病历系统建设与维护教程
- 肝硬化肝性脑病诊疗指南(2024年版)解读
- 2025-2030年速冻玉米行业市场调研及前景趋势预测报告
- 健康管理服务合作意向书
- 洗衣房客户投诉处理流程
- 户外拉布灯箱安装施工方案
- 2024年第八届全国测绘地理信息行业职业技能竞赛参考试题库(含答案)
- 矿山生态保护修复方案编写提纲、方案及图件要求、编图常用图例、可行性分析、附表
评论
0/150
提交评论