黑龙江省齐齐哈尔市龙江二中2023-2024学年数学高一上期末综合测试试题含解析_第1页
黑龙江省齐齐哈尔市龙江二中2023-2024学年数学高一上期末综合测试试题含解析_第2页
黑龙江省齐齐哈尔市龙江二中2023-2024学年数学高一上期末综合测试试题含解析_第3页
黑龙江省齐齐哈尔市龙江二中2023-2024学年数学高一上期末综合测试试题含解析_第4页
黑龙江省齐齐哈尔市龙江二中2023-2024学年数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐齐哈尔市龙江二中2023-2024学年数学高一上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知向量,,且,则A. B.C. D.2.直线与直线互相垂直,则这两条直线的交点坐标为()A. B.C. D.3.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为()()A.1069千米 B.1119千米C.2138千米 D.2238千米4.当时,函数和的图像只可能是()A. B.C. D.5.已知函数的零点在区间上,则()A. B.C. D.6.已知向量,,则在方向上的投影为A. B.8C. D.7.函数的图象如图所示,则函数y的表达式是()A. B.C. D.8.设一个半径为r的球的球心为空间直角坐标系的原点O,球面上有两个点A,B,其坐标分别为(1,2,2),(2,-2,1),则()A. B.C. D.9.已知,,,则a,b,c三个数的大小关系是()A. B.C. D.10.已知,则A. B.C. D.11.已知函数,若函数在上有3个零点,则m的取值范围为()A. B.C. D.12.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,则的单调递增区间是______14.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB相交(包含端点的情况),则实数m的取值范围是________________.15.若,,则______16.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数fx=-x2(1)求不等式cx(2)当gx=fx-mx在18.某工厂以xkg/h的速度生产运输某种药剂(生产条件要求边生产边运输且3<x≤10),每小时可以获得的利润为100(2x+1+(1)要使生产运输该药品3h获得的利润不低于4500元,求x(2)x为何值时,每小时获得的利润最小?最小利润是多少?19.设函数且是定义在上的奇函数(1)求的值;(2)若,试判断函数的单调性不需证明,求出不等式的解集20.求下列各式的值:(1);(2)21.过点的直线被两平行直线与所截线段的中点恰在直线上,求直线的方程22.已知为第四象限角,且,求下列各式的值(1);(2)

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】分析:直接利用向量垂直的坐标表示得到m的方程,即得m的值.详解:∵,∴,故答案为D.点睛:(1)本题主要考查向量垂直的坐标表示,意在考查学生对该这些基础知识的掌握水平.(2)设=,=,则2、B【解析】时,直线分别化为:,此时两条直线不垂直.时,利用两条直线垂直可得:,解得.联立方程解出即可得出.【详解】时,直线分别化为:,此时两条直线不垂直.时,由两条直线垂直可得:,解得.综上可得:.联立,解得,.∴这两条直线的交点坐标为.故选:【点睛】本题考查了直线相互垂直、分类讨论方法、方程的解法,考查了推理能力与计算能力,属于基础题.3、D【解析】利用弧长公式直接求解.【详解】嫦娥五号绕月飞行半径为400+1738=2138,所以嫦娥五号绕月每旋转弧度,飞过的路程约为(千米).故选:D4、A【解析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【点睛】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.5、C【解析】根据解析式,判断的单调性,结合零点存在定理,即可求得零点所在区间,结合题意,即可求得.【详解】函数的定义域为,且在上单调递增,故其至多一个零点;又,,故的零点在区间,故.故选:6、D【解析】依题意有投影为.7、A【解析】由函数的最大、最小值,算出和,根据函数图像算出周期,利用周期公式算出.再由当时函数有最大值,建立关于的等式解出,即可得到函数的表达式.【详解】函数的最大值为,最小值为,,,又函数的周期,,得.可得函数的表达式为,当时,函数有最大值,,得,可得,结合,取得,函数的表达式是.故选:.【点睛】本题给出正弦型三角函数的图象,求它的解析式.着重考查了三角函数的周期公式、三角函数的图象的变换与解析式的求法等知识属于中档题.8、C【解析】由已知求得球的半径,再由空间中两点间的距离公式求得|AB|,则答案可求【详解】∵由已知可得r,而|AB|,∴|AB|r故选C【点睛】本题考查空间中两点间距离公式的应用,是基础题9、A【解析】利用指数函数的单调性比较的大小,再用作中间量可比较出结果.【详解】因为指数函数为递减函数,且,所以,所以,因为,,所以,综上所述:.故选:A10、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质11、A【解析】画出函数图像,分解因式得到,有一个解故有两个解,根据图像得到答案.【详解】画出函数的图像,如图所示:当时,即,有一个解;则有两个解,根据图像知:故选:【点睛】本题考查了函数的零点问题,画出函数图像,分解因式是解题的关键.12、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】函数是由和复合而成,分别判断两个函数的单调性,根据复合函数的单调性同增异减即可求解.【详解】函数是由和复合而成,因为为单调递增函数,对称轴为,开口向上,所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以的单调递增区间为,故答案为:.14、【解析】本道题目先绘图,然后结合图像判断该直线的位置,计算斜率,建立不等式,即可.【详解】要使得与线段AB相交,则该直线介于1与2之间,1号直线的斜率为,2号直线的斜率为,建立不等式关系转化为,所以或解得m范围为【点睛】本道题考查了直线与直线的位置关系,结合图像,判断直线的位置,即可.15、【解析】利用指数的运算性质可求得结果.【详解】由指数的运算性质可得.故答案为:.16、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)x∈(2)m≥1【解析】(1)由不等式fx>0的解集为x1<x<2可得x2-bx-c=0的两根是1,2,根据根系数的关系可求b=3和c=-2,代入不等式cx2【详解】(1)由fx>0的解集为x1<x<2,则-x2+bx+c>0的解集为x1<x<2则1+2=b1×2=-c由cx则解集为x∈(2)由gx=-x则3-m2解出m≥1【点睛】本题考查了三个二次的关系,(1)二次函数的图像与x轴交点的横坐标,二次不等解集的端点值,一元二次方程的根是同一个量的不同表现形式;(2)二次函数、二次不等式,二次方程常称作“三个二次”,其中的某类的问题常可以转化为另两类问题加以解决,所以三者的关系密切而重要.其中二次函数是“三个二次”的核心,通过二次函数的图像使它们贯穿一体,使得数形结合思想在此类问题的解决中十分有效18、(1)[6,10];(2)当x为4kg/h时,每小时获得的利润最小,最小利润为1300元【解析】(1)由题设可得2x+1+8x-2≥15,结合3<x≤10求不等式的解集即可(2)应用基本不等式求y=100(2x+1+8x-2)的最小值,并求出对应的x【小问1详解】依题意得:3×100(2x+1+8x-2)≥4500,即2x+1+8x-2由3<x≤10,故8x-2>0,可得x2-9x+18≥0,即(x-3)(x-6)≥0,解得x≤3或x≥6∴x的取值范围为[6,10].【小问2详解】设每小时获得的利润为y.y=100(2x+1+8x-2)=100[2(x-2)+8x-2+5]≥100[22(x-2)(8x-2)+5]=100(8+5)=1300,当2(x-2)=于是当生产运输速度为4kg/h,每小时获得的利润最小,最小值为1300元19、(1)(2)【解析】(1)由奇函数的性质可得,从而可求出的值;(2)由可得,从而可判断出函数单调性,然后根据函数的奇偶性和单调性解不等式【小问1详解】∵是定义在上的奇函数,,即

,,

当时,,,

故符合题意【小问2详解】∵,又且,,都是上的减函数,是定义在上的减函数,故,,不等式的解集20、(1)-2;(2)18.【解析】(1)利用对数的运算性质化简求值即可.(2)由有理数指数幂与根式的关系及指数幂的运算性质化简求值.【小问1详解】原式【小问2详解】原式21、【解析】先设出线段的中点为,再根据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论