河北省石家庄市晋州一中实验班2024届数学高一上期末考试模拟试题含解析_第1页
河北省石家庄市晋州一中实验班2024届数学高一上期末考试模拟试题含解析_第2页
河北省石家庄市晋州一中实验班2024届数学高一上期末考试模拟试题含解析_第3页
河北省石家庄市晋州一中实验班2024届数学高一上期末考试模拟试题含解析_第4页
河北省石家庄市晋州一中实验班2024届数学高一上期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市晋州一中实验班2024届数学高一上期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.奇函数在内单调递减且,则不等式的解集为()A. B.C. D.2.函数f(x)=若f(x)=2,则x的值是()A. B.±C.0或1 D.3.已知棱长为3的正方体ABCD﹣A1B1C1D1内部有一圆柱,此圆柱恰好以直线AC1为轴,则该圆柱侧面积的最大值为()A.92πC.23π4.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.5.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.6.设分别是x轴和圆:(x-2)2+(y-3)2=1上的动点,且点A(0,3),则的最小值为()A. B.C. D.7.如图,在正中,均为所在边的中点,则以下向量和相等的是()A B.C. D.8.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.9.“”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知,方程有三个实根,若,则实数A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.计算:______12.一个几何体的三视图及其尺寸(单位:cm),如右图所示,则该几何体的侧面积为cm13.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______14.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.15.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数为二次函数,不等式的解集是,且在区间上的最小值为-12(1)求的解析式;(2)设函数在上的最小值为,求的表达式17.已知函数fx=sin(1)求ω的值;(2)求证:当x∈0,7π1218.已知函数的最小正周期为,函数的最大值是,最小值是.(1)求、、的值;(2)指出的单调递增区间.19.已知集合,,.(1)求,(2)若,求实数a的取值范围20.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围21.已知函数.(1)求,的值;(2)在给定的坐标系中,画出的图象(不必列表);(3)若关于的方程恰有3个不相等的实数解,求实数的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】由已知可作出函数的大致图象,结合图象可得到答案.【详解】因为函数在上单调递减,,所以当时,,当,,又因为是奇函数,图象关于原点对称,所以在上单调递减,,所以当时,,当时,,大致图象如下,由得或,解得,或,或,故选:A.【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出的大致图象,考查了学生分析问题、解决问题的能力.2、A【解析】根据函数值为2,分类讨论即可.【详解】若f(x)=2,①x≤-1时,x+2=2,解得x=0(不符合,舍去);②-1<x<2时,,解得x=(符合)或x=(不符,舍去);③x≥2时,2x=2,解得x=1(不符,舍去).综上,x=.故选:A.3、A【解析】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,即可得出结论【详解】由题知,只需考虑圆柱的底面与正方体的表面相切的情况,由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在线段AB1,AC,AD1上,设线段AB1上的切点为E,AC1∩面A1BD=O2,圆柱上底面的圆心为O1,半径即为O1E=r,则AO2=13AC1=1332+32+3故选A【点睛】本题考查求圆柱侧面积的最大值,考查正方体与圆柱的内切问题,考查学生空间想象与分析解决问题的能力,属于中档题4、B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选5、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.6、B【解析】取点A关于x轴的对称点C(0,-3),得到,最小值为.故答案为B.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;再者在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值7、D【解析】根据相等向量的定义直接判断即可.【详解】与方向不同,与均不相等;与方向相同,长度相等,.故选:D.8、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D9、B【解析】解出不等式,进而根据不等式所对应集合间的关系即可得到答案.【详解】由,而是的真子集,所以“”是“”成立的必要不充分条件.故选:B.10、B【解析】判断f(x)与2的大小,化简方程求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值【详解】由1﹣x2≥0得x2≤1,则﹣1≤x≤1,,当x<0时,由f(x)=2,即﹣2x=2得x2=1﹣x2,即2x2=1,x2,则x,①当﹣1≤x时,有f(x)≥2,原方程可化为f(x)+2f(x)﹣22ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x,由﹣1解得:0≤a≤22②当x≤1时,f(x)<2,原方程可化为42ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x,又0≤a≤22,∴0∴x1,x2,x3=0由x3﹣x2=2(x2﹣x1),得2(),解得a(舍)或a因此,所求实数a故选B【点睛】本题主要考查函数与方程的应用,根据分段函数的表达式结合绝对值的应用,确定三个根x1、x2、x3的值是解决本题的关键.综合性较强,难度较大二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据幂的运算法则,根式的定义计算【详解】故答案为:12、80【解析】图复原的几何体是正四棱锥,斜高是5cm,底面边长是8cm,侧面积为×4×8×5=80(cm2)考点:三视图求面积.点评:本题考查由三视图求几何体的侧面积13、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角14、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.15、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)根据不等式的解集是,令,然后由在区间上的最小值为-12,由求解.(2)由(1)知函数的对称轴是,然后分,两种讨论求解.【详解】(1)因为不等式的解集是,令,因为在区间上的最小值为-12,所以,解得,所以.(2)当,即时,,当,即时,所以.【点睛】方法点睛:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论.(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解17、(1)2;(2)证明见解析【解析】(1)解方程T=π=2π(2)利用三角函数的图象和性质,结合不等式逐步求出函数的最值即得证.【小问1详解】解:由题得T=π=2π【小问2详解】证明:fx因为0≤x≤7∴-π∴-3所以当x∈0,7π12即得证.18、(1)(2)【解析】(1)由可得的值,根据正弦函数可得最值,再根据最值对应关系可得方程组,解得、的值;(2)根据正弦函数单调性可得不等式,解不等式可得函数单调区间.试题解析:(1)由函数最小正周期为,得,∴.又的最大值是,最小值是,则解得(2)由(1)知,,当,即时,单调递增,∴的单调递增区间为.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.19、(1);;(2).【解析】(1)解不等式化简集合B,再利用交集、并集、补集的定义直接计算作答.(2)由已知可得,再利用集合的包含关系列式计算作答.【小问1详解】解得:,则,而,所以,或,.【小问2详解】,因,则,于是得,所以实数a的取值范围是.20、(1)(2)【解析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论