河南省五岳在线考试2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第1页
河南省五岳在线考试2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第2页
河南省五岳在线考试2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第3页
河南省五岳在线考试2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第4页
河南省五岳在线考试2023-2024学年高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省五岳在线考试2023-2024学年高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的定义城为()A B.C. D.2.直线的倾斜角为A. B.C. D.3.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是()A. B.C. D.4.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.5.函数的零点一定位于区间()A. B.C. D.6.定义在的函数,已知是奇函数,当时,单调递增,若且,且值()A.恒大于0 B.恒小于0C.可正可负 D.可能为07.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.8.若幂函数的图象过点,则的值为()A.2 B.C. D.49.已知点,直线,则点A到直线l的距离为()A.1 B.2C. D.10.已知集合,,则等于()A. B.C. D.11.若直线与圆交于两点,关于直线对称,则实数的值为()A. B.C. D.12.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若a∈{1,a2﹣2a+2},则实数a的值为___________.14.已知点角终边上一点,且,则______15.两平行直线与之间的距离______.16.设,且,则的取值范围是________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.函数的最小值为.(1)求;(2)若,求a及此时的最大值.18.已知函数(1)当时,求的取值范围;(2)若关于x的方程在区间上恰有两个不同的实数根,求实数m的取值范围19.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本x35917…年利润y1234…给出以下3个函数模型:①;②y=abx(a≠0,b>0,且b≠1);③y=loga(x+b)(a>0,且a≠1)(1)选择一个恰当函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型20.通过研究学生的学习行为,专家发现,学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设f(t)表示学生注意力随时间t(分钟)的变化规律(f(t)越大,表明学生注意力越集中)经过实验分析得知:(1)讲课开始后第5分钟与讲课开始后第25分钟比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道比较难的数学题,需要讲解25分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?21.设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.22.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C2、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B3、A【解析】根据函数的奇偶性和单调性,将不等式进行等价转化,求解即可.【详解】∵f(x)为偶函数,∴f(x)=f(|x|).则f(|2x-1|)<f.又∵f(x)在[0,+∞)上单调递增,∴|2x-1|<,解得<x<.故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.4、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.5、C【解析】根据零点存在性定理,若在区间有零点,则,逐一检验选项,即可得答案.【详解】由题意得为连续函数,且在单调递增,,,,根据零点存在性定理,,所以零点一定位于区间.故选:C6、A【解析】由是奇函数,所以图像关于点对称,当时,单调递增,所以当时单调递增,由,可得,,由可知,结合函数对称性可知选A7、D【解析】因为有直观图可知,该几何体的正视图是有一条从左上角到右下角的对角线的正方形,俯视图是有一条从左下角角到右上角角的对角线的正方形,侧视图是有一条从左上角到右下角的对角线的正方形(对角线为虚线),所以只有选项D合题意,故选D.8、C【解析】设,利用的图象过点,求出的解析式,将代入即可求解.【详解】设,因为的图象过点,所以,解得:,所以,所以,故选:C.9、C【解析】利用点到直线的距离公式计算即可.【详解】解:点,直线,则点A到直线l的距离,故选:C.【点睛】点到直线的距离.10、A【解析】先解不等式,再由交集的定义求解即可【详解】由题,因为,所以,即,所以,故选:A【点睛】本题考查集合的交集运算,考查利用指数函数单调性解不等式11、A【解析】所以直线过圆的圆心,圆的圆心为,,解得.故选A.【点睛】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.12、D【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、2【解析】利用集合的互异性,分类讨论即可求解【详解】因为a∈{1,a2﹣2a+2},则:a=1或a=a2﹣2a+2,当a=1时:a2﹣2a+2=1,与集合元素的互异性矛盾,舍去;当a≠1时:a=a2﹣2a+2,解得:a=1(舍去)或a=2;故答案为:2【点睛】本题考查集合的互异性问题,主要考查学生的分类讨论思想,属于基础题14、【解析】利用任意角的三角函数的定义,即可求得m值【详解】点角终边上一点,,则,故答案为【点睛】本题考查任意角的三角函数的定义,属于基础题15、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.16、【解析】由题意得,,又因为,则的取值范围是三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2),的最大值5【解析】(1)通过配方得,再通过对范围的讨论,利用二次函数的单调性即可求得;(2)由于,对分与进行讨论,即可求得的值及的最大值【小问1详解】∵,∴,且,∴若,即,当时,;若,即,当时,;若,即,当时,.综上所述,.【小问2详解】∵,∴若,则有,得,与矛盾;若,则有,即,解得或(舍),∴时,,即,∵,∴当时,取得最大值5.18、(1)(2)【解析】(1)首先利用三角恒等变换公式化简函数解析式,再根据的取值范围,求出的取值范围,最后根据正弦函数的性质计算可得;(2)依题意可得,再由(1)及正弦函数的性质计算可得;【小问1详解】解:因为即∵,∴,∴,∴,故的取值范围为【小问2详解】解:∵,∴由(1)知,∵有两个不同的实数根,因为在上单调递增,在上单调递减,且当时,由正弦函数图象可知,解得,故实数的取值范围是19、(1)可用③来描述x,y之间的关系,y=log2(x-1);(2)该企业要考虑转型.【解析】(1)把(3,1),(5,2)分别代入三个函数中,求出函数解析式,然后再把x=9代入所求的解析式中,若y=3,则选择此模型;(2)由(1)可知函数模型为y=log2(x-1),令log2(x-1)>6,则x>65,再由与比较,可作出判断.【详解】(1)由表格中的数据可知,年利润y是随着投资成本x的递增而递增,而①是单调递减,所以不符合题意将(3,1),(5,2)代入y=abx(a≠0,b>0,且b≠1),得解得∴.当时,,不符合题意;将(3,1),(5,2)代入y=loga(x+b)(a>0,且a≠1),得解得∴y=log2(x-1)当x=9时,y=log28=3;当x=17时,y=log216=4.故可用③来描述x,y之间的关系.(也可通过画散点图或不同增长方式选择)(2)令log2(x-1)≥6,则x≥65.∵年利润<10%,∴该企业要考虑转型20、(1)讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中(2)讲课开始10分钟,学生的注意力最集中,能持续10分钟(3)不能【解析】(1)分别求出比较即可;(2)由单调性得出最大值,从而得出学生的注意力最集中所持续的时间;(3)由的解,结合的单调性求解即可.【小问1详解】因为,所以讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中【小问2详解】当时,是増函数,且当时,是减函数,且所以讲课开始10分钟,学生的注意力最集中,能持续10分钟【小问3详解】当时,令,则当时,令,则则学生注意力在180以上所持续的时间为所以老师不能在学生达到所需要的状态下讲授完这道题21、(1);(2)(-∞,-2)∪(0,2)【解析】(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,综上所述解集是(-∞,-2)∪(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论