




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江哈尔滨市第九中学2024届高一上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知偶函数在区间内单调递增,若,,,则的大小关系为()A. B.C. D.2.下列函数在其定义域内是增函数的是()A. B.C. D.3.下列函数中,值域为的偶函数是A. B.C. D.4.下列函数中,图象的一部分如图所示的是()A. B.C. D.5.圆过点的切线方程是()A. B.C. D.6.已知函数,则()A.-1 B.2C.1 D.57.若,且x为第四象限的角,则tanx的值等于A. B.-C. D.-8.已知f(x)、g(x)均为[﹣1,3]上连续不断的曲线,根据下表能判断方程f(x)=g(x)有实数解的区间是()x﹣10123f(x)﹣06773.0115.4325.9807.651g(x)﹣0.5303.4514.8905.2416.892A.(﹣1,0) B.(1,2)C.(0,1) D.(2,3)9.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)10.已知函数,若关于x的方程恰有两个不同的实数解,则实数m的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________12.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________13.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________14.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________15.在中,,,与的夹角为,则_____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.设分别是的边上的点,且,,,若记试用表示.17.如图,在四棱锥中,底面,,点在线段上,且.(Ⅰ)求证:平面;(Ⅱ)若,,,,求四棱锥的体积.18.已知若,求方程的解;若关于x的方程在区间上有两个不相等的实根、:求实数k的取值范围;证明:19.设全集实数集,,(1)当时,求和;(2)若,求实数的取值范围20.已知的顶点,边上的中线所在的直线方程为,边上的高所在的直线方程为.(1)求点的坐标;(2)求所在直线的方程.21.已知函数,.(1)设函数,求函数在区间上的值域;(2)定义表示中较小者,设函数.①求函数的单调区间及最值;②若关于的方程有两个不同的实根,求实数的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】先利用偶函数的对称性判断函数在区间内单调递减,结合偶函数定义得,再判断,和的大小关系,根据单调性比较函数值的大小,即得结果.【详解】偶函数的图象关于y轴对称,由在区间内单调递增可知,在区间内单调递减.,故,而,,即,故,由单调性知,即.故选:D.2、A【解析】函数在定义域内单调递减,排除B,单调区间不能用并集连接,排除CD.【详解】定义域为R,且在定义域上单调递增,满足题意,A正确;定义域为,在定义域内是减函数,B错误;定义域为,而在为单调递增函数,不能用并集连接,C错误;同理可知:定义域为,而在区间上单调递增,不能用并集连接,D错误.故选:A3、D【解析】值域为的偶函数;值域为R的非奇非偶函数;值域为R的奇函数;值域为的偶函数.故选D4、D【解析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D5、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.6、A【解析】求分段函数的函数值,将自变量代入相应的函数解析式可得结果.【详解】∵在这个范围之内,∴故选:A.【点睛】本题考查分段函数求函数值的问题,考查运算求解能力,是简单题.7、D【解析】∵x为第四象限的角,,于是,故选D.考点:商数关系8、C【解析】设h(x)=f(x)﹣g(x),利用h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,即可得出结论.【详解】设h(x)=f(x)﹣g(x),则h(0)=f(0)﹣g(0)=﹣0.44<0,h(1)=f(1)﹣g(1)=0.542>0,∴h(x)的零点在区间(0,1),故选:C.【点睛】思路点睛:该题考查的是有关零点存在性定理的应用问题,解题思路如下:(1)先构造函数h(x)=f(x)﹣g(x);(2)利用题中所给的有关函数值,得到h(0)=﹣0.44<0,h(1)=0.542>0;(3)利用零点存在性定理,得到结果.9、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.10、D【解析】根据题意,函数与图像有两个交点,进而作出函数图像,数形结合求解即可.【详解】解:因为关于x的方程恰有两个不同的实数解,所以函数与图像有两个交点,作出函数图像,如图,所以时,函数与图像有两个交点,所以实数m的取值范围是故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.12、【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.13、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.14、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,
可得,圆方程为,
可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,
此时的最小值为AB,
,圆的半径,
,
可得因此的最小值为7,
故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可15、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、;;.【解析】根据平面向量的线性运算,即可容易求得结果.【详解】由题意可得,,,,,,所以.【点睛】本题考查利用基向量表示平面向量,涉及平面向量的线性运算,属基础题.17、(Ⅰ)证明见解析(Ⅱ)【解析】(Ⅰ)由已知可得,,即可证明结论;(Ⅱ)底面,,根据已知条件求出梯形面积,即可求解.【详解】(Ⅰ)证明:因为底面,平面,所以.因为,,所以.又,所以平面.(Ⅱ)解:由(Ⅰ)可知,在中,,,又因为,则.又,,所以四边形为矩形,四边形为梯形.因为,所以,,,于是四棱锥的体积为.【点睛】本题考查线面垂直的证明,注意空间垂直之间的转化,考查椎体的体积,属于基础题.18、(1)(2),见解析【解析】当时,分类讨论,去掉绝对值,直接进行求解,即可得到答案讨论两个根、的范围,结合一元二次方程根与系数之间的关系进行转化求解【详解】当时,,当时,,由,得,得舍或;当时,,由得舍;故当时,方程的解是不妨设,因为,若、,与矛盾,若、,与是单调函数矛盾,则;则…①…②由①,得:,由②,得:;的取值范围是;联立①、②消去k得:,即,即,则,,,即【点睛】本题主要考查了函数与方程的应用,根据条件判断根的范围,以及利用一元二次方程与一次方程的性质进行转化是解决本题的关键,着重考查了分析问题和解答问题的能力,试题综合性较强,属于中档试题19、(1),;(2).【解析】把代入集合B,求出集合B的解集,再根据交集和并集的定义进行求解;因为,可知,求出,再根据子集的性质进行求解;【详解】(1)由题意,可得,当时,,则,若,则或,、当时,,满足A.当时,,又,则综上,【点睛】本题主要考查了交集和并集的定义以及子集的性质,其中解答中熟记集合的运算,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.20、(1)(2)【解析】(1)根据AC和BH的垂直关系可得到直线的方程为,再代入点A的坐标可得到直线的方程为,联立CM直线可得到C点坐标;(2)设,则,将两个点分别带入BH和CM即可求出,结合第一问得到BC的方程解析:(1)因为,的方程为,不妨设直线的方程为,将代入得,解得,所以直线的方程为,联立直线的方程,即,解得点的坐标为.(2)设,则,因为点在上,点在上,所以,解得,所以,所以直线的方程为,整理得.21、(1);(2)①.答案见解析;②..【解析】(1)为上的单调增函数,故值域为.(2)计算得,由此得到的单调性和最值,而有两个不同的根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能安防设备升级改造服务合同
- 2025年度小额贷款逾期债务追偿合同
- 图书馆水电维修服务
- 2025年度房屋买卖合同违约责任认定与赔偿标准
- 2025年度个人信息数据保密与隐私保护协议
- 2025年度航空航天技术简易版投资协议
- 2025年度教育机构股份转让及资源整合协议
- 亲子乐园单项装修合同
- 2025年度城市综合体安全保卫与保安服务合同
- 2025年度养老院养老人才引进合作协议
- 《中小学科学教育工作指南》解读与培训
- 学校食堂“三同三公开”制度实施方案
- 2025年浙江国企台州黄岩站场管理服务有限公司招聘笔试参考题库附带答案详解
- 2025年湖南高速铁路职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年医院财务工作计划(2篇)
- DB32T 4969-2024大型医用设备使用监督管理平台基础数据采集规范
- 2025年大连长兴开发建设限公司工作人员公开招聘高频重点提升(共500题)附带答案详解
- -人教版四年级下册英语全册教案-
- 教科版三年级下册科学全册单元教材分析
- 《物理学的发展史》课件
- 2025年广东广州市海珠区官洲街道办事处政府雇员招聘5人高频重点提升(共500题)附带答案详解
评论
0/150
提交评论