版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省驻马店经济开发区高级中学2024届数学高一上期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知是上的偶函数,在上单调递增,且,则下列不等式成立的是()A. B.C. D.2.函数是偶函数且在上单调递减,,则的解集为()A. B.C D.3.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或4.若,,则()A. B.C. D.5.已知,则=()A. B.C. D.6.设m、n是不同的直线,、、是不同的平面,有以下四个命题:(1)若、,则(2)若,,则(3)若、,则(4)若,,则其中真命题的序号是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)7.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个8.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台9.在空间坐标系中,点关于轴的对称点为()A. B.C. D.10.已知角的终边与单位圆相交于点,则=()A. B.C. D.11.若,则的最小值为()A. B.C. D.12.sin()=()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间14.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.15.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________16.若点在角终边上,则的值为_____三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,AB是圆柱OO1的一条母线,BC是底面的一条直径,D是圆О上一点,且AB=BC=5,CD=3(1)求该圆柱的侧面积;(2)求点B到平面ACD的距离18.已知函数,,设(1)求的值;(2)是否存在这样的负实数k,使对一切恒成立,若存在,试求出k取值集合;若不存在,说明理由.19.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.20.已知函数的定义域为,且对一切,,都有,当时,总有.(1)求的值;(2)证明:是定义域上的减函数;(3)若,解不等式.21.已知函数的图象过点与点.(1)求,的值;(2)若,且,满足条件的的值.22.设函数(1)若是偶函数,求k的值(2)若存在,使得成立,求实数m的取值范围;(3)设函数若在有零点,求实数的取值范围
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】根据函数的奇偶性和函数的单调性判断函数值的大小即可.【详解】因为是上的偶函数,在上单调递增,所以在上单调递减,.又因为,因为,在上单调递减,所以,即.故选:B.2、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.3、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.4、A【解析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.【详解】由,则,A正确;,B错误;,D错误.当时,,C错误;故选:A.5、B【解析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【详解】解:解得故选:【点睛】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.6、D【解析】故选D.7、A【解析】对于①:利用棱台的定义进行判断;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.即可判断;对于③:举反例:底面的菱形,各侧面都是正方形的四棱柱不是正方体.即可判断;对于④:利用圆锥的性质直接判断.【详解】对于①:棱台是棱锥过侧棱上一点作底面的平行平面分割而得到的.而两个面平行且相似,其余各面都是梯形的多面体中,把梯形的腰延长后,有可能不交于一点,就不是棱台.故①错误;对于②:以直角三角形的斜边为轴旋转一周所得的旋转体不是圆锥.故②错误;对于③:各侧面都是正方形的四棱柱中,如果底面的菱形,一定不是正方体.故③错误;对于④:圆锥的轴截面是等腰三角形.是正确的.故④正确.故选:A8、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.9、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.10、C【解析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可.【详解】角的终边与单位圆相交于点,故,所以,故.故选:C.11、B【解析】由,根据基本不等式,即可求出结果.【详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.12、A【解析】直接利用诱导公式计算得到答案.【详解】故选:【点睛】本题考查了诱导公式化简,意在考查学生对于诱导公式的应用.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、(1);(2)和【解析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和14、-8【解析】答案:-8.解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角.15、【解析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积16、5【解析】由三角函数定义得三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)利用圆柱的侧面积公式计算出侧面积.(2)利用等体积法求得到平面的距离.【小问1详解】圆柱的底面半径为,高为,所以圆柱的侧面积为.【小问2详解】是圆的直径,所以,,.根据圆柱的几何性质可知,由于,所以平面,所以.,,设到平面的距离为,则,即.18、(1);(2)存在,.【解析】(1)由题可得,代入即得;(2)由题可得函数,,为奇函数且在上单调递减,构造函数,则可得恒成立,进而可得,对恒成立,即求.【小问1详解】∵函数,,∴,∴.【小问2详解】∵,由,得,又在上单调递减,在其定义域上单调递增,∴在上单调递减,又,∴为奇函数且单调递减;∵,又函数在R上单调递增,∴函数在R上单调递减,又,∴函数为奇函数且单调递减;令,则函数在上单调递减,且为奇函数,由,可得,即恒成立,∴,即,对恒成立,故,即,故存在负实数k,使对一切恒成立,k取值集合为.【点睛】关键点点睛:本题的关键是构造奇函数,从而问题转化为,对恒成立,参变分离后即求.19、(1)(2)【解析】(1)设出圆的方程,代入A、B两点坐标,求出圆心和半径,从而求出圆的方程;(2)先求出交点坐标,进而求出半径,写出圆的方程.【小问1详解】设圆的方程为,由题意得:,解得:,所以圆的方程为;【小问2详解】联立与,解得:,所以交点为,则圆的半径为,所以圆的方程为.20、(1);(2)证明见解析;(3).【解析】(1)令即可求得结果;(2)设,由即可证得结论;(3)将所求不等式化为,结合单调性和定义域的要求即可构造不等式组求得结果.【小问1详解】令,则,解得:;【小问2详解】设,则,,,,是定义域上的减函数;【小问3详解】由得:,即,又,,是定义域上的减函数,,解得:;又,,的解集为.【点睛】思路点睛:本题考查抽象函数的函数值的求解、单调性证明以及利用单调性求解函数不等式的问题;求解函数不等式的基本思路是将所求不等式化为同一函数的两个函数值之间的比较问题,进而通过函数的单调性得到自变量的大小关系.21、(1),;(2).【解析】(1)由给定条件列出关于,的方程组,解之即得;(2)由(1)的结论列出指数方程,借助换元法即可作答.【详解】(1)由题意可得,解得,,(2)由(1)可得,而,且,于是有,设,,从而得,解得,即,解得,所以满足条件的.22、(1),(2),(3)【解析】(1)由偶函数的定义可得,,列方程可求出的值;(2)由,可得,分离出,换元后利用二次函数的性质求解即可;(3)结合已知条件,代入可求,然后结合在有零点,利用换元法,结二次函数的性质求解.【详解】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 装修电工劳务合同模板
- 餐厅保洁劳动合同模板
- 土方转运劳务合同模板
- 银行个人借款合同模板
- 模具费采购合同模板
- 工业冷库销售合同模板
- 库存耳饰出售合同模板
- 江苏净水器租赁合同模板
- 股集资合同模板
- 共同卖货合同模板
- 新质生产力:复合概念、发展基础与系统创新路径
- 2024年个人车位租赁合同参考范文(三篇)
- (完整版)新概念英语第一册单词表(打印版)
- 江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)
- 2024年山东省济南市中考数学真题(含答案)
- 二手门市销售合同范本
- 2024年安全员A证试题库(附答案)
- 部编版五年级上册《交流平台·初试身手·习作例文》课件
- 新苏教版六年级上册科学全册知识点
- 2.2生命活动的主要承担者-蛋白质(公开课)
- 2024-2030年中国汽摩配行业运营态势及重点企业发展分析报告
评论
0/150
提交评论