版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省平顶山市郏县一中2024届高一上数学期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.若,则()A.2 B.1C.0 D.2.将函数的图象向左平移个单位后,所得图象对应的函数是()A. B.C. D.3.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt4.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.5.函数的图像恒过定点,点在幂函数的图像上,则()A.16 B.8C.4 D.26.已知a>0,则当取得最小值时,a值为()A. B.C. D.37.函数部分图象大致为()A. B.C. D.8.若,则tanθ等于()A.1 B.-1C.3 D.-39.下列函数中,既是偶函数,又在区间上单调递增的是()A. B.C. D.10.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.911.古希腊数学家阿基米德最为满意的一个数学发现是“圆柱容球”,即在球的直径与圆柱底面的直径和圆柱的高相等时,球的体积是圆柱体积的,且球的表面积也是圆柱表面积的.已知体积为的圆柱的轴截面为正方形.则该圆柱内切球的表面积为()A B.C. D.12.已知函数,,则函数的值域为()A B.C. D.二、填空题(本大题共4小题,共20分)13.已知点角终边上一点,且,则______14.已知偶函数在单调递减,.若,则的取值范围是__________.15.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.16.若,则___________.三、解答题(本大题共6小题,共70分)17.已知函数,其定义域为D(1)求D;(2)设,若关于的方程在内有唯一零点,求的取值范围18.已知角的顶点在坐标原点,始边与轴非负半轴重合,终边经过点(1)求,;(2)求的值19.已知为锐角,,(1)求和的值;(2)求和的值20.已知函数(1)判断函数的奇偶性,并证明你的结论;(2)解不等式21.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.22.如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF//AC,AB=,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDE;
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据正弦、余弦函数的有界性及,可得,,再根据同角三角函数的基本关系求出,即可得解;【详解】解:∵,,又∵,∴,,又∵,∴,∴,故选:C2、D【解析】根据图像平移过程,写出平移后的函数解析式即可.【详解】由题设,.故选:D3、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D4、C【解析】根据余弦二倍角公式即可计算求值.【详解】∵=,∴,∴.故选:C.5、A【解析】利用恒等式可得定点P,代入幂函数可得解析式,然后可得.【详解】当时,,所以函数的图像恒过定点记,则有,解得所以.故选:A6、C【解析】利用基本不等式求最值即可.【详解】∵a>0,∴,当且仅当,即时,等号成立,故选:C7、A【解析】根据函数的解析式可判断函数为奇函数,再根据函数的零点个数可得正确的选项.【详解】因为,所以为奇函数,图象关于原点对称,故排除B;令,即,解得,即只有一个零点,故排除C,D故选:A8、D【解析】由诱导公式及同角三角函数基本关系化简原式即可求解.【详解】由已知即故选:D【点睛】本题考查诱导公式及同角三角函数基本关系,属于简单题.9、D【解析】根据题意,依次判断选项中函数的奇偶性、单调性,从而得到正确选项.【详解】根据题意,依次判断选项:对于A,,是非奇非偶函数,不符合题意;对于B,,是余弦函数,是偶函数,在区间上不是单调函数,不符合题意;对于C,,是奇函数,不是偶函数,不符合题意;对于D,,是二次函数,其开口向下对称轴为y轴,既是偶函数又在上单调递增,故选:D.10、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.11、A【解析】由题目给出的条件可知,圆柱内切球的表面积圆柱表面积的,通过圆柱的体积求出圆柱底面圆半径和高,进而得出表面积,再计算内切球的表面积.【详解】设圆柱底面圆半径为,则圆柱高为,圆柱体积,解得,又圆柱内切球的直径与圆柱底面的直径和圆柱的高相等,所以内切球的表面积是圆柱表面积的,圆柱表面积为,所以内切球的表面积为.故选:A.12、B【解析】先判断函数的单调性,再利用单调性求解.【详解】因为,在上都是增函数,由复合函数的单调性知:函数,在上为增函数,所以函数的值域为,故选:B二、填空题(本大题共4小题,共20分)13、【解析】利用任意角的三角函数的定义,即可求得m值【详解】点角终边上一点,,则,故答案为【点睛】本题考查任意角的三角函数的定义,属于基础题14、【解析】因为是偶函数,所以不等式,又因为在上单调递减,所以,解得.考点:本小题主要考查抽象函数的奇偶性与单调性,考查绝对值不等式的解法,熟练基础知识是关键.15、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.16、1【解析】由已知结合两角和的正切求解【详解】由,可知tan(α+β)=1,得,即tanα+tanβ=,∴故答案为1【点睛】本题考查两角和的正切公式的应用,是基础的计算题三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)由可求出结果;(2)由求出或,根据方程在内有唯一零点,得到,解得结果即可.【小问1详解】由得,得,得,所以函数的定义域为,即.【小问2详解】因为,所以,所以或,因为关于的方程在内有唯一零点,且,所以,解得.18、(1)(2)1【解析】(1)根据三角函数的定义,计算即可得答案.(2)根据诱导公式,整理化简,代入,的值,即可得答案.【小问1详解】因为角终边经过点,所以,【小问2详解】原式19、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以20、(1)f(x)为奇函数,证明见解析;(2)当a>1时,不等式的解集为(0,1);当0<a<1时,不等式的解集为(﹣1,0)【解析】(1)先求出函数的定义域,再求出f(﹣x)与f(x)的关系,利用函数的奇偶性的定义,得出结论;(2)分类讨论底数的范围,再利用函数的定义域和单调性,求得x的范围【小问1详解】对于函数,由,求得﹣1<x<1,故函数的定义域为(﹣1,1),再根据可得f(x)为奇函数【小问2详解】不等式f(x)>0,即loga(x+1)>loga(1﹣x),当a>1时,可得x+1>1﹣x,且x∈(﹣1,1),求得0<x<1当0<a<1时,可得x+1<1﹣x,且x∈(﹣1,1),求得﹣1<x<0,综上,当a>1时,不等式的解集为(0,1);当0<a<1时,不等式的解集为(﹣1,0)21、(1)(2)图像答案见解析,单调递增区间为,单调递减区间为【解析】(1)由函数的奇偶性的定义和已知解析式,计算时的解析式,可得所求的解析式;(2)由分段函数的图像画法,可得所求图像,结合的图像,可得的单调区间【小问1详解】设,则,所以,又为奇函数,所以,又为定义在上的奇函数,所以,所以【小问2详解】作出函数的图像,如图所示:函数的单调递增区间为,单调递减区间为.22、(Ⅰ)见解析;(Ⅱ)见解析【解析】(1)设AC与BD交于点G.因为EF∥AG,且EF=1,AG=AC=1,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论