湖北省武汉市新洲区2023年高一上数学期末联考模拟试题含解析_第1页
湖北省武汉市新洲区2023年高一上数学期末联考模拟试题含解析_第2页
湖北省武汉市新洲区2023年高一上数学期末联考模拟试题含解析_第3页
湖北省武汉市新洲区2023年高一上数学期末联考模拟试题含解析_第4页
湖北省武汉市新洲区2023年高一上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省武汉市新洲区2023年高一上数学期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.如果角的终边在第二象限,则下列结论正确的是A. B.C. D.2.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.3.函数的部分图像为()A. B.C. D.4.在新冠肺炎疫情初始阶段,可以用指数模型::I(t)=ert(其中r为指数增长率)描述累计感染病例数I(t)随时间t(单位:天)的变化规律.有学者基于已有数据估计出累计感染病例数增加1倍需要的时间约为2天,据此,在新冠肺炎疫情初始阶段,指数增长率r的值约为()(参考数值:ln20.69)A.0.345 B.0.23C.0.69 D.0.8315.设函数,若,则A. B.C. D.6.形如的函数因其图像类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数有最小值,则“囧函数”与函数的图像交点个数为()A.1 B.2C.4 D.67.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为8.设,,,则的大小关系为()A. B.C. D.9.为配制一种药液,进行了二次稀释,先在容积为40L的桶中盛满纯药液,第一次将桶中药液倒出用水补满,搅拌均匀,第二次倒出后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V的最小值为()A.5 B.10C.15 D.2010.,,,则的大小关系为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年(1)求森林面积的年增长率;(2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?(3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:,)12.已知幂函数在其定义域上是增函数,则实数___________13.写出一个满足,且的函数的解析式__________14.函数满足,且在区间上,则的值为____15.已知函数(1)当时,求的值域;(2)若,且,求的值;三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数.(1)利用“五点法”完成下面表格,并画出函数在区间上的图像.(2)解不等式.17.已知函数的部分图象如图所示,其中.(1)求值;(2)若角是的一个内角,且,求的值.18.已知函数.(1)求的值;(2)若函数在区间是单调递增函数,求实数的取值范围;(3)若关于的方程在区间内有两个实数根,记,求实数的取值范围.19.(1)若正数a,b满足,求的最小值,并求出对应的a,b的值;(2)若正数x,y满足,求的取值范围20.田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为,田忌的三匹马分别为.三匹马各比赛一次,胜两场者为获胜.若这六匹马比赛的优劣程度可以用以下不等式表示:.(1)如果双方均不知道对方马的出场顺序,求田忌获胜的概率;(2)为了得到更大的获胜概率,田忌预先派出探子到齐王处打探实情,得知齐王第一场必出上等马,那么,田忌应怎样安排出马的顺序,才能使自己获胜的概率最大?最大概率是多少?21.如图,已知三棱锥中,,,为的中点,为的中点,且为正三角形.(1)求证:平面;(2)求证:平面;(3)若,,求三棱锥的体积.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由题意结合三角函数的性质确定所给结论是否正确即可.【详解】角的终边在第二象限,则,AC错误;,B正确;当时,,,D错误本题选择B选项.【点睛】本题主要考查三角函数符号,二倍角公式及其应用等知识,意在考查学生的转化能力和计算求解能力.2、B【解析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.3、D【解析】先判断奇偶性排除C,再利用排除B,求导判断单调性可排除A.【详解】因为,所以为偶函数,排除C;因为,排除B;当时,,,当时,,所以函数在区间上单调递减,排除A.故选:D4、A【解析】由题设可知第天感染病例数为,则第天的感染感染病例数为,由感染病例数增加1倍需要的时间约为2天,则,解出即可得出答案.【详解】由题设可知第天感染病例数为,则第天的感染感染病例数为由感染病例数增加1倍需要的时间约为2天,则所以,即所以故选:A5、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质6、C【解析】令,根据函数有最小值,可得,由此可画出“囧函数”与函数在同一坐标系内的图象,由图象分析可得结果.【详解】令,则函数有最小值∵,∴当函数是增函数时,在上有最小值,∴当函数是减函数时,在上无最小值,∴.此时“囧函数”与函数在同一坐标系内的图象如图所示,由图象可知,它们的图象的交点个数为4.【点睛】本题考查对数函数的性质和函数图象的应用,考查学生画图能力和数形结合的思想运用,属中档题.7、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.8、D【解析】利用指数函数和对数函数的单调性即可判断.【详解】,,,,.故选:D.9、B【解析】依据题意列出不等式即可解得V的最小值.【详解】由,解得则V的最小值为10.故选:B10、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、(1);(2)5年;(3)17年.【解析】(1)设森林面积的年增长率为,则,解出,即可求解;(2)设该地已经植树造林年,则,解出的值,即可求解;(3)设为使森林面积至少达到亩,至少需要植树造林年,则,再结合对数函数的公式,即可求解.【小问1详解】解:设森林面积的年增长率为,则,解得【小问2详解】解:设该地已经植树造林年,则,,解得,故该地已经植树造林5年【小问3详解】解:设为使森林面积至少达到亩,至少需要植树造林年,则,,,,即取17,故为使森林面积至少达到亩,至少需要植树造林17年12、【解析】根据幂函数定义,可求得a值,根据其单调性,即可得答案.【详解】因为为幂函数,所以,解得或,又在其定义域上是增函数,所以,所以.故答案为:13、(答案不唯一)【解析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).14、【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)表格、图象见解析;(2),.【解析】(1)根据正弦函数的性质,在坐标系中描出上或的点坐标,再画出其图象即可.(2)由正弦函数的性质得,,即可得解集.【小问1详解】由正弦函数的性质,上的五点如下表:0000函数图象如下:【小问2详解】由,即,故,,所以,,故不等式解集为,.17、(1),,,(2)【解析】(1)根据图象的特征,列式确定的值;(2)根据(1)的结果,代入解析式,得,结合同角三角函数基本关系式,即可求解.【小问1详解】由图象可知,,解得:,,,解得:,当时,,得,因为,所以,综上可知,,,,;【小问2详解】由(1)可知,,即,因为,解得:18、(1)(2)(3)【解析】分析:(1)先根据二倍角公式以及配角公式化为基本三角函数,再代入求值;(2)根据正弦函数性质确定单调性递增区间,再根据区间之间包含关系列不等式,解得实数的取值范围;(3)先根据正弦函数图像确定a的取值范围,再根据对称性得,最后代入求实数的取值范围.详解:(1)∵∴(2)由,得,∴在区间上是增函数∴当时,在区间上是增函数若函数在区间上是单调递增函数,则∴,解得(3)方程在区间内有两实数根等价于直线与曲线有两个交点.∵当时,由(2)知在上是增函数,在上是减函数,且,,,∴即实数的取值范围是∵函数的图像关于对称∴,∴∴实数的取值范围为.点睛:函数性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间;由求减区间19、(1)当且仅当时,取得最小值为18;(2)【解析】(1)化简得,再利用基本不等式求最值;(2)由题得,再解一元二次不等式得解.【详解】(1)原式,当且仅当时取等号,所以最小值为18.(2),即,即,解得,所以,当且仅当取等号所以的取值范围为20、(1)(2)田忌按或的顺序出马,才能使自己获胜的概率达到最大【解析】(1)齐王与田忌赛马,有六种情况,田忌获胜的只有一种,故田忌获胜的槪率为.(2)因齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,在余下的两场比赛中,田忌获胜的概率为(余下两场是齐王的中马对田忌上马和齐王的下马对田忌的上马;齐王的中马对田忌下马和齐王的下马对田忌的中马,前者田忌赢,后者田忌输)解析:记与比赛为,其它同理.(1)齐王与田忌赛马,有如下六种情况:;;;;;;其中田忌获胜的只有一种:.故田忌获胜的槪率为.(2)已知齐王第一场必出上等马,若田忌第一场必出上等马或中等马,则剩下二场,田忌至少输一场,这时田忌必败.为了使自己获胜的概率最大,田忌第一场应出下等马,后两场有两种情形:①若齐王第二场派出中等马,可能的对阵为:或.田忌获胜的概率为,②若齐王第二场派出下等马,可能的对阵为:或.田忌获胜的概率也为.所以,田忌按或的顺序出马,才能使自己获胜的概率达到最大.21、(1)见详解;(2)见详解;(3).【解析】(1)先证,可证平面.(2)先证,得,结合可证得平面.(3)等积转换,由,可求得体积.【详解】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论