版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省华中师范大学东湖开发区第一附属中学2023年高一数学第一学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,下列区间中包含零点的区间是()A. B.C. D.2.关于不同的直线与不同的平面,有下列四个命题:①,,且,则②,,且,则③,,且,则④,,且,则其中正确命题的序号是A.①② B.②③C.①③ D.③④3.在空间直角坐标系中,点关于面对称的点的坐标是A. B.C. D.4.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则5.数向左平移个单位,再向上平移1个单位后与的图象重合,则A.为奇函数 B.的最大值为1C.的一个对称中心为 D.的一条对称轴为6.已知则()A. B.C. D.7.下列函数在上是增函数的是A. B.C. D.8.设命题p:∀x∈0,1,x>xA.∀x∈0,1,x<x3C.∀x∈0,1,x≤x39.已知函数若方程恰有三个不同的实数解a,b,c(),则的取值范围是().A. B.C. D.10.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C. D.11.“”是“”的()条件A.充分不必要 B.必要不充分C.充要 D.即不充分也不必要12.过点,直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数是奇函数,则实数__________.14.已知函数定义域是________(结果用集合表示)15.已知函数是定义在上的奇函数,当时,,则当时____16.在平面内将点绕原点按逆时针方向旋转,得到点,则点的坐标为__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的最小正周期为(1)求图象的对称轴方程;(2)将的图象向左平移个单位长度后,得到函数的图象,求函数在上的值域18.已知函数.(1)若函数的定义域为,求的取值范围;(2)设函数.若对任意,总有,求的取值范围.19.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.20.已知是定义在上的偶函数,当时,.(1)求在时的解析式;(2)若,在上恒成立,求实数的取值范围.21.已知函数(且)的图象过点(1)求的值.(2)若.(i)求的定义域并判断其奇偶性;(ii)求的单调递增区间.22.已知函数.(1)若点在角的终边上,求的值;(2)若,求的值域.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据函数零点的存在性定理,求得,即可得到答案.【详解】由题意,函数,易得函数为单调递减函数,又由,所以,根据零点的存在定理,可得零点的区间是.故选:C.2、C【解析】根据线线垂直,线线平行的判定,结合线面位置关系,即可容易求得判断.【详解】对于①,若,,且,显然一定有,故正确;对于②,因为,,且,则的位置关系可能平行,也可能相交,也可能是异面直线,故错;对于③,若,//且//,则一定有,故③正确;对于④,,,且,则与的位置关系不定,故④错故正确的序号有:①③.故选C【点睛】本题考查直线和直线的位置关系,涉及线面垂直以及面面垂直,属综合基础题.3、C【解析】关于面对称的点为4、D【解析】,,故选D.考点:点线面的位置关系.5、D【解析】利用函数的图象变换规律得到的解析式,再利用正弦函数的图象,得出结论【详解】向左平移个单位,再向上平移1个单位后,可得的图象,在根据所得图象和的图象重合,故,显然,是非奇非偶函数,且它的最大值为2,故排除A、B;当时,,故不是对称点;当时,为最大值,故一条对称轴为,故D正确,故选D.【点睛】本题主要考查函数的图象变换规律,正弦函数的图象的对称性,属于基础题.利用y=sinx的对称中心为求解,令,求得x.6、D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【详解】∵∴∴,∴,∴故选:D7、A【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,,在区间上单调递增,符合题意;对于B,,为指数函数,在区间上单调递减,不符合题意;对于C,,为对数函数,在区间上单调递减,不符合题意;对于D,反比例函数,在区间上单调递减,不符合题意;故选A【点睛】本题考查函数单调性的判断,属于基础题8、D【解析】直接根据全称命题的否定,即可得到结论.【详解】因为命题p:∀x∈0,1,x所以¬p:∃x∈0,1,x故选:D9、A【解析】画出的图象,数形结合可得求出.【详解】画出的图象所以方程恰有三个不同的实数解a,b,c(),可知m的取值范围为,由题意可知,,所以,所以故选:A.10、B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选11、B【解析】根据充分条件和必要条件的概念,结合题意,即可得到结果.【详解】因为,所以“”是“”的必要不充分条件.故选:B.12、A【解析】解方程即得解.【详解】由题得.故选:A【点睛】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据给定条件利用奇函数的定义计算作答.【详解】因函数是奇函数,其定义域为R,则对,,即,整理得:,而不恒为0,于得,所以实数.故答案为:14、【解析】根据对数函数的真数大于0求解即可.【详解】函数有意义,则,解得,所以函数的定义域为,故答案为:15、【解析】设则得到,再利用奇函数的性质得到答案.【详解】设则,函数是定义在上的奇函数故答案为【点睛】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.16、【解析】由条件可得与x轴正向的夹角为,故与x轴正向的夹角为设点B的坐标为,则,,∴点的坐标为答案:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)【解析】(1)先由诱导公式及倍角公式得,再由周期求得,由正弦函数的对称性求对称轴方程即可;(2)先由图象平移求出,再求出,即可求出在上的值域【小问1详解】,则,解得,则,令,解得,故图象的对称轴方程为.【小问2详解】,,则,,则在上的值域为.18、(1);(2)【解析】(1)等价于在上恒成立.解得的取值范围是;(2)等价于在上恒成立,所以的取值范围是.试题解析:(1)函数的定义域为,即在上恒成立.当时,恒成立,符合题意;当时,必有.综上,的取值范围是.(2)∵,∴.对任意,总有,等价于在上恒成立在上恒成立.设,则(当且仅当时取等号).,在上恒成立.当时,显然成立当时,在上恒成立.令,.只需.∵在区间上单调递增,∴.令.只需.而,且∴.故.综上,的取值范围是.19、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【详解】(1)∵,∴,∴..∴∴,∴;(2)由(1)知,由,可得且,解得.综上所述:的取值范围是20、(1);(2).【解析】(1)利用函数的奇偶性结合条件即得;(2)由题可知在上恒成立,利用函数的单调性可求,即得.【小问1详解】∵当时,,∴当时,,∴,又是定义在上的偶函数,∴,故当时,;【小问2详解】由在上恒成立,∴在上恒成立,∴又∵与在上单调递增,∴,∴,解得或,∴实数的取值范围为.21、(1);(2)(i)定义域为,是偶函数;(ii).【解析】(1)由可求得实数的值;(2)(i)根据对数的真数大于零可得出关于实数的不等式,由此可解得函数的定义域,然后利用函数奇偶性的定义可证明函数为偶函数;(ii)利用复合函数法可求得函数的增区间.【详解】(1)由条件知,即,又且,所以;(2).(i)由得,故的定义域为.因为,故是偶函数;(ii),因为函数单调递增,函数在上单调递增,故的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三级点检培训制度(2篇)
- 公司员工福利管理制度(2篇)
- 2025年专卖店店长助理个人工作总结样本(2篇)
- 2025年外贸业务员月个人工作总结样本(2篇)
- 医院消防安全管理机构人员职责模版(2篇)
- 2025年无奋斗不青春演讲稿样本(3篇)
- 电控班组长安全职责(2篇)
- 张拉设备安全操作规程(4篇)
- 学校圣诞节活动方案范例(三篇)
- 药品退出管理规定(3篇)
- 2024-2030年中国商品混凝土行业产量预测分析投资战略规划研究报告
- 2023年中国奥特莱斯行业白皮书
- 2024年江苏省学业水平合格性考试全真模拟语文试题(解析版)
- 第六章 绿色化学与科技课件
- 封窗安全事故免责协议书范文
- 北京市海淀区2023-2024学年高二上学期期末考试 生物 含解析
- 小学数学《比的认识单元复习课》教学设计(课例)
- 小学三年级下册数学(青岛54制)全册知识点总结
- 汽车修理业务受理程序、服务承诺、用户抱怨制度
- 河综合治理工程竣工环保验收监测调查报告
- 2024年院感多重耐药菌医院感染预防与控制技术指南专项测试题有答案
评论
0/150
提交评论