河北省廊坊市名校2023年高一数学第一学期期末质量检测试题含解析_第1页
河北省廊坊市名校2023年高一数学第一学期期末质量检测试题含解析_第2页
河北省廊坊市名校2023年高一数学第一学期期末质量检测试题含解析_第3页
河北省廊坊市名校2023年高一数学第一学期期末质量检测试题含解析_第4页
河北省廊坊市名校2023年高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊市名校2023年高一数学第一学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设,则()A.13 B.12C.11 D.102.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.3.若,则的大小关系为.A. B.C. D.4.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.5.已知函数若则的值为().A. B.或4C. D.或46.,,且(3)(λ),则λ等于()A. B.-C.± D.17.已知函数,则()A. B.C. D.18.函数的图像大致为()A. B.C. D.9.已知幂函数的图象过点(2,),则的值为()A B.C. D.10.设则()A. B.C. D.11.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米 B.1.768米C.2.043米 D.2.945米12.素数也叫质数,部分素数可写成“”的形式(是素数),法国数学家马丁•梅森就是研究素数的数学家中成就很高的一位,因此后人将“”形式(是素数)的素数称为梅森素数.2018年底发现的第个梅森素数是,它是目前最大的梅森素数.已知第个梅森素数为,第个梅森素数为,则约等于(参考数据:)()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的单调递增区间是_________14.已知,若,则实数的取值范围为__________15.已知圆及直线,当直线被圆截得的弦长为时,的值等于________.16.已知幂函数的图象经过点(16,4),则k-a的值为___________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知集合=R.(1)求;(2)求(A);(3)如果非空集合,且A,求的取值范围.18.已知函数f(x)=(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值19.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.20.已知函数是定义在上的奇函数.(1)求实数的值;(2)解关于的不等式;(3)是否存在实数,使得函数在区间上的取值范围是?若存在,求出实数的取值范围;若不存在,请说明理由.21.已知函数(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若,求函数的最大值和最小值.22.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】将代入分段函数解析式即可求解.【详解】,故选:A2、B【解析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【详解】圆心,半径,圆心到直线的距离则切线长的最小值【点睛】本题考查圆的切线长,考查数形结合思想,属于基础题3、D【解析】由指数函数,对数函数的单调性,求出的大致范围即可得解.【详解】解:因为,,即,故选D.【点睛】本题考查了比较指数值,对数值的大小关系,属基础题.4、D【解析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.5、B【解析】利用分段讨论进行求解.【详解】当时,,(舍);当时,,或(舍);当时,,;综上可得或.故选:B.【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识.6、A【解析】利用向量垂直的充要条件列出方程,利用向量的运算律展开并代值,即可求出λ【详解】∵,∴=0,∵(3)⊥(λ),∴(3)•(λ)=0,即3λ2+(2λ﹣3)﹣22=0,∴12λ﹣18=0,解得λ=故选A7、D【解析】由分段函数定义计算【详解】,所以故选:D8、A【解析】先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.9、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题10、D【解析】由指数函数、对数函数的单调性,并与0,1比较可得答案【详解】由指数、对数函数的性质可知:,,所以有.故选:D11、B【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长【详解】解:由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离故选:B12、C【解析】根据两数远远大于1,的值约等于,设,运用指数运算法则,把指数式转化对数式,最后求出的值.【详解】因为两数远远大于1,所以的值约等于,设,因此有.故选C【点睛】本题考查了数学估算能力,考查了指数运算性质、指数式转化为对数式,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.14、【解析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【点睛】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题15、【解析】结合题意,得到圆心到直线的距离,结合点到直线距离公式,计算a,即可【详解】结合题意可知圆心到直线的距离,所以结合点到直线距离公式可得,结合,所以【点睛】考查了直线与圆的位置关系,考查了点到直线距离公式,难度中等16、【解析】根据幂函数的定义得到,代入点,得到的值,从而得到答案.【详解】因为为幂函数,所以,即代入点,得,即,所以,所以.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)(3)或.【解析】(1)化简集合、,根据并集的定义写出;(2)根据补集与交集的定义写出;(3)根据非空集合与,得出关于的不等式,求出解集即可试题解析:(1)∵===∴(2)∵A=∴A)(3)非空集合∴,即∵A∴或即或∴或18、(1)π(2)最大值1,最小值-【解析】(1)根据正弦函数的性质即可求解;(2)将看作整体,根据正弦函数的图像即可求解.【小问1详解】f(x)=sin,所以f(x)的最小正周期为T==π;【小问2详解】因为x∈,所以2x+∈,根据正弦函数的图像可知:当2x+=,即x=时,f(x)取得最大值1,当2x+=,即x=时,f(x)取得最小值-;综上,最小正周期为,最大值为1,最小值为.19、(1),;(2)【解析】(1)根据对称轴和周期可求和的值(2)由题设可得,利用同角的三角函数的基本关系式可得,利用诱导公式和两角和的正弦可求的值【详解】(1)因为图象相邻两个最高点的距离为,故周期为,所以,故又图象关于直线,故,所以,因为,故(2)由(1)得,因为,故,因为,故,故又【点睛】方法点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.20、(1)1(2)(3)存在,【解析】(1)根据求解并检验即可;(2)先证明函数单调性得在上为增函数,再根据奇偶性与单调性解不等式即可;(3)根据题意,将问题方程有两个不相等的实数根,再利用换元法,结合二次方程根的关系求解即可.【小问1详解】解:因为是定义在上的奇函数,所以,即,得.此时,,满足.所以【小问2详解】解:由(1)知,,且,则.∵,∴,,∴,即,故在上增函数∴原不等式可化为,即∴,∴∴,∴原不等式的解集为【小问3详解】解:设存在实数,使得函数在区间上的取值范围是,则,即,∴方程,即有两个不相等的实数根∴方程有两个不相等的实数根令,则,故方程有两个不相等的正根故,解得∴存在实数,使得函数在区间上的取值范围是,其中的取值范围为.21、(1)减函数,证明见解析(2),【解析】(1)根据定义法证明函数单调性即可求解;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论