![贵州省毕节市2024届数学高一上期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view10/M03/16/3C/wKhkGWV3uVKAfcobAAJDIM_X4BM777.jpg)
![贵州省毕节市2024届数学高一上期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view10/M03/16/3C/wKhkGWV3uVKAfcobAAJDIM_X4BM7772.jpg)
![贵州省毕节市2024届数学高一上期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view10/M03/16/3C/wKhkGWV3uVKAfcobAAJDIM_X4BM7773.jpg)
![贵州省毕节市2024届数学高一上期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view10/M03/16/3C/wKhkGWV3uVKAfcobAAJDIM_X4BM7774.jpg)
![贵州省毕节市2024届数学高一上期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view10/M03/16/3C/wKhkGWV3uVKAfcobAAJDIM_X4BM7775.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省毕节市2024届数学高一上期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.条件p:|x|>x,条件q:,则p是q的()A.充要条件 B.既不充分也不必要条件C.必要不充分条件 D.充分不必要条件2.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.3.设a=,b=,c=,则a,b,c的大小关系是()A. B.C. D.4.已知正方体外接球的表面积为,正方体外接球的表面积为,若这两个正方体的所有棱长之和为,则的最小值为()A. B.C. D.5.给出下列命题:①第二象限角大于第一象限角;②不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;③若,则与的终边相同;④若,是第二或第三象限的角.其中正确的命题个数是()A.1 B.2C.3 D.46.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.47.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.8.下列指数式与对数式的互化不正确的一组是()A.100=1与lg1=0 B.与C.log39=2与32=9 D.log55=1与51=59.下列命题正确的是()A.若,则B.若,则C.若,则D.若,则10.如图,,下列等式中成立的是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________12.《九章算术》是我国古代内容极为丰富的数学名著,其中有这样一个问题:“今有宛田,下周三十步,径十六步.问为田几何?”其意思为:“有一块扇形的田,弧长为30步,其所在圆的直径为16步,问这块田的面积是多少平方步?”该问题的答案为___________平方步.13.已知一个扇形的弧长为,其圆心角为,则这扇形的面积为______14.函数y=的单调递增区间是____.15.已知幂函数在上为减函数,则实数_______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知圆M与x轴相切于点(a,0),与y轴相切于点(0,a),且圆心M在直线上.过点P(2,1)直线与圆M交于两点,点C是圆M上的动点.(1)求圆M的方程;(2)若直线AB的斜率不存在,求△ABC面积的最大值;(3)是否存在弦AB被点P平分?若存在,求出直线AB的方程;若不存在,说明理由.17.已知是第二象限,且,计算:(1);(2)18.已知函数(1)求函数的最小正周期和单调递减区间;(2)求函数,的值域19.已知函数.(1)求函数的定义域;(2)若对任意恒有,求实数的取值范围.20.已知平面直角坐标系内四点,,,.(1)判断的形状;(2)A,B,C,D四点是否共圆,并说明理由.21.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若最大值与最小值之和为5,求的值.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】解不等式得到p:,q:或,根据推出关系得到答案.【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件故答案为:D2、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.3、C【解析】根据指数和幂函数的单调性比较大小即可.【详解】因为在上单调递增,在上单调递减所以,故.故选:C4、B【解析】设正方体的棱长为,正方体的棱长为,然后表示出两个正方体外接球的表面积,求出化简变形可得答案【详解】解:设正方体的棱长为,正方体的棱长为因为,所以,则因为,所以,因为,所以,故当时,取得最小值,且最小值为故选:B5、A【解析】根据题意,对题目中的命题进行分析,判断正误即可.【详解】对于①,根据任意角的概念知,第二象限角不一定大于第一象限角,①错误;对于②,根据角的定义知,不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关,②正确;对于③,若,则与的终边相同,或关于轴对称,③错误;对于④,若,则是第二或第三象限的角,或终边在负半轴上,④错误;综上,其中正确命题是②,只有个.故选:【点睛】本题考查真假命题的判断,考查三角函数概念,属于基础题.6、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B7、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.8、B【解析】根据指数式与对数式的互化逐一判断即可.【详解】A.1对数等于0,即,可得到:100=1与lg1=0;故正确;B.对应的对数式应为,故不正确;C.;故正确,D.很明显log55=1与51=5是正确的;故选:B.【点睛】本题考查指数式与对数式的互化,考查基本分析判断能力,属基础题.9、D【解析】由不等式性质依次判断各个选项即可.【详解】对于A,若,由可得:,A错误;对于B,若,则,此时未必成立,B错误;对于C,当时,,C错误;对于D,当时,由不等式性质知:,D正确.故选:D.10、B【解析】本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案【详解】因为,所以,所以,即,故选B【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.12、120【解析】利用扇形的面积公式求解.【详解】由题意得:扇形弧长为30,半径为8,所以扇形的面积为:,故答案为:12013、2【解析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【详解】设扇形的半径为,圆心角为,弧长,可得=4,这条弧所在的扇形面积为,故答案为.【点睛】本题主要考查扇形的面积公式和弧长公式,意在考查对基础知识与基本公式掌握的熟练程度,属于中档题.14、【解析】设函数,再利用复合函数的单调性原理求解.【详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:15、-1【解析】利用幂函数的定义列出方程求出m的值,将m的值代入函数解析式检验函数的单调性【详解】∵y=(m2﹣5m﹣5)x2m+1是幂函数∴m2﹣5m﹣5=1解得m=6或m=﹣1当m=6时,y=(m2﹣5m﹣5)x2m+1=x13不满足在(0,+∞)上为减函数当m=﹣1时,y=(m2﹣5m﹣5)x2m+1=x﹣1满足在(0,+∞)上为减函数故答案为m=﹣1【点睛】本题考查幂函数的定义:形如y=xα(其中α为常数)、考查幂函数的单调性与幂指数的正负有关三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)(3)存在,方程为【解析】(1)根据圆与坐标轴相切表示出圆心坐标,结合已知可解;(2)注意到当点C到直线AB距离最大值为圆心到直线距离加半径,然后可解;(3)根据圆心与弦的中点的连线垂直弦,或利用点差法可得.【小问1详解】∵圆M与x轴相切于点(a,0),与y轴相切于点(0,a),∴圆M的圆心为M(a,a),半径.又圆心M在直线上,∴,解得.∴圆M的方程为:.【小问2详解】当直线AB的斜率不存在时,直线AB的方程为,∴由,解得.∴.易知圆心M到直线AB的距离,∴点C到直线AB的最大距离为.∴△ABC面积的最大值为.【小问3详解】方法一:假设存在弦AB被点P平分,即P为AB的中点.又∵,∴.又∵直线MP的斜率为,∴直线AB的斜率为-.∴.∴存在直线AB的方程为时,弦AB被点P平分.方法二:由(2)易知当直线AB的斜率不存在时,,∴此时点P不平分AB.当直线AB的斜率存在时,,假设点P平分弦AB.∵点A、B是圆M上的点,设,.∴由点差法得.由点P是弦AB的中点,可得,∴.∴∴存在直线AB的方程为时,弦AB被点P平分.17、(1);(2).【解析】(1)首先根据诱导公式化简,再上下同时除以后,转化为正切表示的式子,求值;(2)首先利用诱导公式化简,再转化为齐次分式形式,转化为正切求值.【详解】(1)原式,上下同时除以后,得;(2)原式,上下同时除以后,得18、(1),单调递减区间(2)【解析】(1)先利用三角函数恒等变换公式对函数化简变形得,从而可求出函数的周期,由可求出函数的减区间,(2)由,得,然后利用正弦函数的性质可求出函数的值域【小问1详解】∴令,,解得,函数的单调递减区间为【小问2详解】∵,∴故有,则的值域为19、(1)答案见解析;(2).【解析】(1)根据对数的真数为正即可求解;(2)对任意恒有对恒成立,参变分离即可求解a的范围.【小问1详解】由得,,等价于,∵方程的,当,即时,恒成立,解得,当,即时,原不等式即为,解得且;当,即,又,即时,方程的两根、,∴解得或,综上可得当时,定义域为,当时,定义域为且,当时,定义域为或;【小问2详解】对任意恒有,即对恒成立,∴,而,在上是减函数,∴,所以实数的取值范围为.20、(1)是等腰直角三角形(2)A,B,C,D四点共圆;理由见解析【解析】(1)利用两点间距离公式可求得,再利用斜率公式可得到,即可判断三角形形状;(2)由(1)先求得的外接圆,再判断点是否在圆上即可【详解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四点共圆;由(1),设的外接圆的圆心为,则,即,解得,此时,所以的外接圆的方程为,将D点坐标代入方程得,即D点在的外接圆上.∴A,B,C,D四点共圆【点睛】本题考查两点间距离公式的应用,考查斜率公式的应用,考查三角形的外接圆,考查圆的方程,考查运算能力21、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度杭州电子科技大学产学研合作项目合同
- 2025年度出租车司机培训与技能提升合同
- 2025年国际海上救助服务海运货物运输合同协议范本
- 2025年度绿色生态建设环保合同范本
- 2025年度企业并购贷款续借合同模板
- 北京餐饮合伙合同范本
- 买卖山地合同范例
- vr制作合同范本
- 修路车辆租赁合同范例
- 出售翻新塔吊合同范本
- 药膳与食疗试题及答案高中
- 北京市西城区2024-2025学年八年级上学期期末考试数学试卷含答案
- 2025年南京信息职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 二零二五年度海外市场拓展合作协议4篇
- 2025年春新外研版(三起)英语三年级下册课件 Unit4第2课时Speedup
- 2024年湖南汽车工程职业学院单招职业技能测试题库标准卷
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 公共关系学完整教学课件
- 固定资产借用登记表
- 行业会计比较ppt课件(完整版)
- 外固定架--ppt课件
评论
0/150
提交评论