版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省安顺市平坝区集圣中学2023-2024学年高一上数学期末考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.已知集合,则集合中元素的个数是()A.1个 B.2个C.3个 D.4个2.如图,在四面体ABCD中,E,F分别是AC与BD的中点,若CD=2AB=4,EF⊥BA,则EF与CD所成的角为()A.90° B.45°C.60° D.30°3.已知方程的两根分别为、,且、,则A. B.或C.或 D.4.已知角α的终边经过点,则()A. B.C. D.5.已知函数,则()A. B.C. D.6.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.7.已知且,函数,满足对任意实数,都有成立,则实数的取值范围是()A. B.C. D.8.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.9.函数的零点所在的大致区间是A. B.C. D.10.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃11.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半这条直线被后人称之为三角形的欧拉线若的顶点,,且的欧拉线的方程为,则顶点C的坐标为A. B.C. D.12.设函数满足,当时,,则()A.0 B.C. D.1二、填空题(本大题共4小题,共20分)13.已知直线,直线若,则______________14.已知,则________.15.若幂函数在区间上是减函数,则整数________16.函数的零点个数为___三、解答题(本大题共6小题,共70分)17.函数f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示(1)求A,ω,φ的值;(2)求图中a,b的值及函数f(x)的递增区间;(3)若α∈[0,π],且f(α)=,求α的值18.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程19.已知f(x)是定义在R上偶函数,且当x≥0时,(1)用定义法证明f(x)在(0,+∞)上单调递增;(2)求不等式f(x)>0的解集.20.(1)计算:,(为自然对数的底数);(2)已知,求的值.21.已知函数,.(1)若函数的值域为R,求实数m的取值范围;(2)若函数是函数的反函数,当时,函数的最小值为,求实数m的值;(3)用表示m,n中的最大值,设函数,有2个零点,求实数m的范围.22.若函数在定义域内存在实数,使得成立,则称函数有“飘移点”Ⅰ试判断函数及函数是否有“飘移点”并说明理由;Ⅱ若函数有“飘移点”,求a的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据,所以可取,即可得解.【详解】由集合,,根据,所以,所以中元素的个数是3.故选:C2、D【解析】设G为AD的中点,连接GF,GE,由三角形中位线定理可得,,则∠GFE即为EF与CD所成的角,结合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函数即可得到答案.【详解】解:设G为AD的中点,连接GF,GE则GF,GE分别为△ABD,△ACD的中线.∴,且,,且,则EF与CD所成角的度数等于EF与GE所成角的度数又EF⊥AB,∴EF⊥GF则△GEF为直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故选:D.3、D【解析】将韦达定理的形式代入两角和差正切公式可求得,根据韦达定理可判断出两角的正切值均小于零,从而可得,进而求得,结合正切值求得结果.【详解】由韦达定理可知:,又,,本题正确选项:【点睛】本题考查根据三角函数值求角的问题,涉及到两角和差正切公式的应用,易错点是忽略了两个角所处的范围,从而造成增根出现.4、D【解析】推导出,,,再由,求出结果【详解】∵角的终边经过点,∴,,,∴故选:D5、A【解析】由题中条件,推导出,,,,由此能求出的值【详解】解:函数,,,,,故选A【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题6、B【解析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【点睛】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题7、D【解析】根据单调性的定义可知函数在R上为增函数,即可得到,解出不等式组即可得到实数的取值范围【详解】∵对任意实数,都有成立,∴函数在R上为增函数,∴,解得,∴实数的取值范围是故选:D8、C【解析】根据给定图象求出函数的解析式,再平移,代入计算作答.【详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C9、C【解析】分别求出的值,从而求出函数的零点所在的范围【详解】由题意,,,所以,所以函数的零点所在的大致区间是,故选C.【点睛】本题考察了函数的零点问题,根据零点定理求出即可,本题是一道基础题10、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B11、A【解析】设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标【详解】设C(m,n),由重心坐标公式得,三角形ABC的重心为(,),代入欧拉线方程得:2=0,整理得:m﹣n+4=0①AB的中点为(1,2),直线AB的斜率k2,AB的中垂线方程为y﹣2(x﹣1),即x﹣2y+3=0联立,解得∴△ABC的外心为(﹣1,1)则(m+1)2+(n﹣1)2=32+12=10,整理得:m2+n2+2m﹣2n=8②联立①②得:m=﹣4,n=0或m=0,n=4当m=0,n=4时B,C重合,舍去∴顶点C的坐标是(﹣4,0)故选A【点睛】本题考查直线方程的求法,训练了直线方程的点斜式,考查了方程组的解法12、A【解析】根据给定条件依次计算并借助特殊角的三角函数值求解作答.【详解】因函数满足,且当时,,则,所以.故选:A二、填空题(本大题共4小题,共20分)13、【解析】由两条直线垂直,可得,解方程即可求解.详解】若,则,解得,故答案为:【点睛】本题考查了由两条直线互相垂直,求参数的范围,熟练掌握直线垂直的充要条件是解题的关键,考查了运算能力,属于基础题.14、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.15、2【解析】由题意可得,求出的取值范围,从而可出整数的值【详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:216、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.三、解答题(本大题共6小题,共70分)17、(1);(2),递增区间为;(3)或.【解析】(1)利用函数图像可直接得出周期T和A,再利用,求出,然后利用待定系数法直接得出的值(2)通过第一问求得的值可得到的函数解析式,令,再根据a的位置确定出a的值;令得到的函数值即为b的值;利用正弦函数单调增区间即可求出函数的单调增区间(3)令结合即可求得的取值【详解】解:(1)由图象知A=2,=-(-)=,得T=π,即=2,得ω=1,又f(-)=2sin[2×(-)+φ]=-2,得sin(-+φ)=-1,即-+φ=-+2kπ,即ω=+2kπ,k∈Z,∵|φ|<,∴当k=0时,φ=,即A=2,ω=1,φ=;(2)a=--=--=-,b=f(0)=2sin=2×=1,∵f(x)=2sin(2x+),∴由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,即函数f(x)的递增区间为[kπ-,kπ+],k∈Z;(3)∵f(α)=2sin(2α+)=,即sin(2α+)=,∵α∈[0,π],∴2α+∈[,],∴2α+=或,∴α=或α=【点睛】关于三角函数图像需记住:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期关于正弦函数单调区间要掌握:当时,函数单调递增;当时,函数单调递减18、(1)(2)【解析】【试题分析】(1)设所求直线方程为:,将点坐标代入,求得的值,即得所求.(2)求得中点坐标和直线交点的坐标,利用点斜式得到所求直线方程.【试题解析】(1)设与:平行的直线方程为:,将代入,得,解得,故所求直线方程是:(2)∵,,∴线段的中点是,设两直线的交点为,联立解得交点,则,故所求直线的方程为:,即19、(1)证明见解析;(2)或【解析】(1)先设,然后利用作差法比较与的大小即可判断,(2)当时,,然后结合分式不等式可求,再设,根据已知可求,然后再求解不等式【详解】解:(1)是定义在上偶函数,且当时,,设,则,所以,所以在上单调递增,(2)当时,,整理得,,解得或(舍,设,则,,整理得,,解得,(舍或,综上或故不等式的解集或20、(1)2;(2).【解析】(1)由条件利用对数的运算性质求得要求式子的值.(2)由条件利用同角三角函数的基本关系平方即可求解【详解】(1)原式.(2)因为,两边同时平方,得.【点睛】本题主要考查对数的运算性质,同角三角函数的基本关系,熟记公式是关键,属于基础题21、(1)(2)(3)【解析】(1)函数的值域为R,可得,求解即可;(2)设分类论可得m的值;(3)对m分类讨论可得结论.【小问1详解】值域为R,∴【小问2详解】,.设,,①若即时,,②若,即时,,舍去③若即时,,无解,舍去综上所示:【小问3详解】①显然,当时,在无零点,舍去②当时,,舍去③时,解分别为,,只需控制,不要均大于等于1即可Ⅰ:,,,舍去Ⅱ:,无解,综上:22、(Ⅰ)函数有“飘移点”,函数没有“飘移点”.证明过程详见解析(Ⅱ)【解析】Ⅰ按照“飘移点”的概念,只需方程有根即可,据此判断;Ⅱ由题得,化简得,可得,可求>,解得a范围【详解】Ⅰ函数有“飘移点”,函数没有“飘移点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业高级顾问聘任协议范例版B版
- 2025年江西货运从业资格试题答案大全
- 建筑工程铝扣板施工合同
- 智能城市交通网络部署合同
- 会计师事务所公关部聘用合同
- 2025年正规商品代销合同书范文
- 港口物流船运租赁合同
- 食品公司品控员招聘合同模板
- 河北省张家口市2024届高三上学期期末考试数学试题(解析版)
- 图书馆建设拆迁施工合同
- 桥式起重机定期检查记录表
- 微观经济学(山东联盟-山东财经大学)智慧树知到期末考试答案2024年
- 数据可视化技术智慧树知到期末考试答案2024年
- MOOC 警察礼仪-江苏警官学院 中国大学慕课答案
- 三基考试题库与答案
- 2024年广东省2024届高三二模英语试卷(含标准答案)
- 全飞秒激光近视手术
- 2024年制鞋工专业知识考试(重点)题库(含答案)
- 2023-2024学年广州大附属中学中考一模物理试题含解析
- 绿化养护工作日记录表
- 2024美的在线测评题库答案
评论
0/150
提交评论