2023-2024学年人教版初中数学八年级下册数学《第17章 勾股定理》单元测试卷04(含答案)_第1页
2023-2024学年人教版初中数学八年级下册数学《第17章 勾股定理》单元测试卷04(含答案)_第2页
2023-2024学年人教版初中数学八年级下册数学《第17章 勾股定理》单元测试卷04(含答案)_第3页
2023-2024学年人教版初中数学八年级下册数学《第17章 勾股定理》单元测试卷04(含答案)_第4页
2023-2024学年人教版初中数学八年级下册数学《第17章 勾股定理》单元测试卷04(含答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《第十七章勾股定理》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.下列各组数中,不是“勾股数”的是()A.7,24,25 B.1,, C.6,8,10 D.9,12,152.已知点A的坐标为(2,﹣1),则点A到原点的距离为()A.3 B. C. D.13.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A. B. C.a+b D.a﹣b4.下列线段能组成直角三角形的一组是()A.1,2,2 B.3,4,5 C.,2, D.5,6,75.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5 B.1,1, C.8,12,13 D.6.如图,数轴上点A对应的数是﹣1,点C对应的数是﹣3,BC⊥AC,垂足为C,且BC=1,以A为圆心,AB长为半径画弧,交数轴于点D,则点D表示的数为()A.﹣1+ B. C.﹣1+ D.7.如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5) B.(5,0) C.(6,0) D.(0,6)8.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.309.下面各图中,不能证明勾股定理正确性的是()A. B. C. D.10.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4 B.3.6 C.4.5 D.4.55二.填空题11.若一直角三角形的两边长为4、5,则第三边的长为.12.直角三角形的两直角边长分别为6和8,则斜边中线的长是.13.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为.14.如图,已知∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=.15.有一组勾股数,两个较小的数为8和15,则第三个数为.16.如图所示的网格是正方形网格,则∠ABC+∠ACB=.(点A,B,C是网格线交点).17.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为.18.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为.19.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为.20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了.三.解答题21.如图,在△ABC中,∠BAC=90°,AB=15,AC=20,AD⊥BC,垂足为D.求AD,BD的长.22.如图,已知在△ABC中,CD⊥AB于点D,AC=20,BC=15,DB=9,(1)求DC、AB的长;(2)求证:△ABC是直角三角形.23.如图,Rt△ACB在直线l上,且∠ABC=90°,BC=6cm,AC=10cm.(1)求AB的长.(2)若有一动点P从点B出发,以2cm/s的速度在直线l上运动,则当t为何值时,△ACP为等腰三角形?24.如图,∠C=90°,AC=12,BC=9,AD=8,BD=17,求△ABD的面积.25.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,DC=12,AD=13,求四边形ABCD的面积.26.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:其中m>n>0,m,n是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.27.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2.(1)请你结合图形来证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上的一点M到l1的距离是.求点M的坐标.

参考答案一、选择题1.B 2.C 3.B 4.B 5.D 6.C 7.D 8.C 9.C 10.D二、填空题11.和3 12.5. 13.49. 14.90°.15.17. 16.45°. 17.10. 18.8cm.三、解答题21.解:∵∠BAC=90°,AB=15,AC=20,∴BC==25,∵S△ABC=AB•AC=BC•AD,∴AB•AC=BC•AD,∴15×20=25AD,∴AD=12;∵AD⊥BC,∴BD===9.22.解:(1)∵在Rt△BCD中,BC=15,BD=9,∴CD===12.在Rt△ADC中,AC=20,CD=12,∴AD===16.∴AB=AD+DB=16+9=25.(2)∵AB=25,AC=20,BC=15,∴AB2=252=625,AC2+BC2=202+152=625,∴AB2=AC2+BC2,∴△ABC是直角三角形.23.解:(1)∵∠ABC=90°,BC=6cm,AC=10cm,∴AB===8cm;(2)①如图1,若CP=CA,则:BP=CP+BC=6+10=16或BP=CP﹣BC=10﹣6=4,即2t=16,t=8或2t=4,t=2;②如图2,若AP=AC,则:AB垂直平分PC,BP=BC=6,即2t=6,t=3;③若PA=PC,则P在AC的垂直平分线上,所以P在B左侧,PB=2t,BC=6,∴t=8,PA=2t+6,∵∠ABP=90°,∴AP2=AB2+BP2,即(2t+6)2=(2t)2+82,解得t=;综上所述,当点P向左运动s、2s、3s或向右运动8s时,△ACP为等腰三角形.24.解:∵∠C=90°,AC=12,BC=9,∴AB2=AC2+CB2,∴AB=15.∵AD=8,BD=17,∴DB2=AD2+AB2,∴∠DAB=90°,∴△ABD的面积=AB×AD=60.答:△ABD的面积为60.25.解:连接AC,∵∠ABC=90°,AB=3,BC=4,∴AC==5,∵DC=12,AD=13,∴AC2+DC2=52+122=25+144=169,AD2=132=169,∴AC2+DC2=AD2,∴△ACD是∠ACD=90°的直角三角形,四边形ABCD的面积=△ABC的面积+△ACD的面积,=AB•BC+AC•CD=×3×4+×5×12=6+30=36.26.解:当n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,∵直角三角形有一边长为5,∴Ⅰ、当a=5时,(m2﹣1)=5,解得:m=(舍去),Ⅱ、当b=5时,即m=5,代入①③得,a=12,c=13,Ⅲ、当c=5时,(m2+1)=5,解得:m=±3,∵m>0,∴m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.27.(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S△ABC=S△ABM+S△AMC,S△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,又∵S△ABC=×AC×BD=×AC×h,AB=AC,∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A(﹣4,0),B(0,3)同理求得C(1,0).AB==5,AC=5,所以AB=AC,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论