广西柳州市柳州高中2023-2024学年高一数学第一学期期末质量跟踪监视试题含解析_第1页
广西柳州市柳州高中2023-2024学年高一数学第一学期期末质量跟踪监视试题含解析_第2页
广西柳州市柳州高中2023-2024学年高一数学第一学期期末质量跟踪监视试题含解析_第3页
广西柳州市柳州高中2023-2024学年高一数学第一学期期末质量跟踪监视试题含解析_第4页
广西柳州市柳州高中2023-2024学年高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西柳州市柳州高中2023-2024学年高一数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数(为自然对数的底)的零点所在的区间为A. B.C. D.2.圆O1:x2+y2﹣6x+4y+12=0与圆O2:x2+y2﹣14x﹣2y+14=0的位置关系是()A.相离 B.内含C.外切 D.内切3.“对任意,都有”的否定形式为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得4.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则5.如果AB>0,BC>0,那么直线Ax-By-C=0不经过的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知偶函数的定义域为,当时,,若,则的解集为()A. B.C. D.7.若sin(),α是第三象限角,则sin()=()A. B.C. D.8.设命题,则为()A. B.C. D.9.给定函数①;②;③;④,其中在区间上单调递减的函数的序号是()A.①② B.②③C.③④ D.①④10.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.12.若正实数满足,则的最大值是________13.高斯是德国著名的数学家,用其名字命名的“高斯函数”为,其中表示不超过x的最大整数.例如:,.已知函数,若,则________;不等式的解集为________.14.已知函数是定义在上的奇函数,则___________.15.若,且α为第一象限角,则___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数的最小正周期为4,且满足(1)求的解析式(2)是否存在实数满足?若存在,请求出的取值范围;若不存在,请说明理由17.已知,Ⅰ求的值;Ⅱ求的值;Ⅲ若且,求的值18.(1)设函数.若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式.19.我们知道,声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播.在物理学中,声波在单位时间内作用在与其传递方向垂直的单位面积上的能量称为声强I().但在实际生活中,常用声音的声强级D(分贝)来度量.为了描述声强级D()与声强I()之间的函数关系,经过多次测定,得到如下数据:组别1234567声强I()①声强级D()1013.0114.7716.022040②现有以下三种函数模型供选择:(1)试根据第1-5组的数据选出你认为符合实际的函数模型,简单叙述理由,并根据第1组和第5组数据求出相应的解析式;(2)根据(1)中所求解析式,结合表中已知数据,求出表格中①、②数据的值;(3)已知烟花的噪声分贝一般在,其声强为;鞭炮的噪声分贝一般在,其声强为;飞机起飞时发动机的噪声分贝一般在,其声强为,试判断与的大小关系,并说明理由20.已知函数f(x)=(1)若f(2)=a,求a的值;(2)当a=2时,若对任意互不相等实数x1,x2∈(m,m+4),都有>0成立,求实数m的取值范围;(3)判断函数g(x)=f(x)-x-2a(<a<0)在R上的零点的个数,并说明理由21.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.2、D【解析】先求出两圆的圆心距,再比较圆心距和两个半径的关系得解.【详解】由题得圆O1:它表示圆心为O1(3,-2)半径为1的圆;圆O2:,它表示圆心为O2(7,1),半径为6的圆.两圆圆心距为,所以两圆内切.故选:D【点睛】本题主要考查两圆位置关系的判定,意在考查学生对这些知识的理解掌握水平.3、D【解析】全称命题的否定是特称命题,据此得到答案.【详解】全称命题的否定是特称命题,则“对任意,都有”的否定形式为:存在,使得.故选:D.【点睛】本题考查了全称命题的否定,属于简单题.4、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D5、B【解析】斜率为,截距,故不过第二象限.考点:直线方程.6、D【解析】先由条件求出参数,得到在上的单调性,结合和函数为偶函数进行求解即可.【详解】因为为偶函数,所以,解得.在上单调递减,且.因为,所以,解得或.故选:D7、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.8、D【解析】根据全称量词否定的定义可直接得到结果.【详解】根据全称量词否定的定义可知:为:,使得.故选:.【点睛】本题考查含量词的命题的否定,属于基础题.9、B【解析】根据指对幂函数性质依次判断即可得答案.【详解】解:对于①,在上单调递增;对于②,在上单调递减;对于③,时,在上单调递减;对于④,在上单调递增;故在区间上单调递减的函数的序号是②③故选:B10、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。12、4【解析】由基本不等式及正实数、满足,可得的最大值.【详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.13、①.②.【解析】第一空:”根据“高斯函数”的定义,可得,进而再分类讨论建立方程求值即可;第二空:分类讨论建立不等式求解即可.【详解】由题意,得,当时,,即;当时,,即(舍),综上;当时,,即,当时,,即,综上,.故答案为:;.【点睛】关键点睛:求解分段函数相关问题的关键是“分段归类”,即应用分类讨论思想.14、1【解析】依题意可得,,则,解得当时,,则所以为奇函数,满足条件,故15、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)存在;【解析】(1)因为的最小正周期为4,可求得,再根据满足,可知的图象关于点对称,结合,即可求出的值,进而求出结果;(2)由(1)可得,再根据,在同一坐标系中作出与的大致图象,根据图像并结合的单调性,建立方程,即可求出,由此即可求出结果.【小问1详解】解:因为的最小正周期为4,所以因为满足,所以的图象关于点对称,所以,所以,即,又,所以所以的解析式为【小问2详解】解:由,可得当时,,在同一坐标系中作出与的大致图象,如图所示,当时,,再结合的单调性可知点的横坐标即方程的根,解得结合图象可知存在实数满足,的取值范围是17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】Ⅰ根据同角的三角函数的关系即可求出;Ⅱ根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出;Ⅲ由,根据同角的三角函数的关系结合两角差的正弦公式即可求出【详解】Ⅰ,,,.Ⅱ,.Ⅲ,,,,,.【点睛】三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角18、(1);(2)答案见解析.【解析】(1)由题设知对一切实数恒成立,根据二次函数的性质列不等式组求参数范围.(2)分类讨论法求一元二次不等式的解集.【详解】(1)由题设,对一切实数恒成立,当时,在上不能恒成立;∴,解得.(2)由,∴当时,解集为;当时,无解;当时,解集为;19、(1),理由见解析(2),(3),理由见解析【解析】(1)根据表格中的数据进行分析,可排除一次函数和二次函数,再根据待定系数法,即可得到结果;(2)由(1),令,可求出的值,即可知道①处的值;由已知可得时,可得,进而可求出当时的值,进而求出②处的值;(3)设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知可得,代入关系式,即可判断与的大小关系.【小问1详解】解:选择.由表格中的前四组数据可知,当自变量增加量为时,函数值的增加量不是同一个常数,所以不应该选择一次函数;同时当自变量增加量为时,函数值的增加量从变为,后又缩小为,函数值的增加量越来越小,也不应该选择二次函数;故应选择.由已知可得:,即,解之得所以解析式为.【小问2详解】解:由(1)知,令,可得,,故①处应填;由已知可得时,,所以,又当时,,故②处应填.【小问3详解】解:设烟花噪声、鞭炮噪声和飞机起飞时发动机噪声的声强级分别为,由已知,故有,所以,因此,即,所以.20、(1);(2);(3)个零点,理由见解析.【解析】(1)分类讨论求出f(2),代入f(2)=a,解方程可得;(2)a=2时,求出分段函数的增区间;“对任意互不相等的实数x1,x2∈(m,m+4),都有0成立”⇔f(x)在(m,m+4)上是增函数,根据子集关系列式可得m的范围;(3)按照x≥a和x<a这2种情况分别讨论零点个数【详解】解:(1)因为f(2)=a,当a≤2时,4-2(a+1)+a=a,解得a=1符合;当a<2时,-4+2(a+1)-a=a,此式无解;综上可得:a=1(2)当a=2时,f(x)=,∴f(x)的单调增区间为(-∞,)和(2,+∞),又由已知可得f(x)在(m,m+4)上单调递增,所以m+4≤,或m≥2,解得m≤-或m≥2,∴实数m的取值范围是(-∞,-]∪[2,+∞);(3)由题意得g(x)=①当x≥a时,对称轴为x=,因为-,所以f(a)=a2-a2-2a-a=-3a>0,∵-a=>a,∴f()=-=-<0,由二次函数可知,g(x)在区间(a,)和区间(,+∞)各有一个零点;②当x<a时,对称轴为x=>a,函数g(x)在区间(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论