广西防城港市2024届数学高一上期末质量跟踪监视模拟试题含解析_第1页
广西防城港市2024届数学高一上期末质量跟踪监视模拟试题含解析_第2页
广西防城港市2024届数学高一上期末质量跟踪监视模拟试题含解析_第3页
广西防城港市2024届数学高一上期末质量跟踪监视模拟试题含解析_第4页
广西防城港市2024届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西防城港市2024届数学高一上期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,共60分)1.已知函数,若,则的值为A. B.C.-1 D.12.尽管目前人类还无法精准预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级之间的关系式为.年月日,日本东北部海域发生里氏级地震,它所释放出来的能量是年月日我国四川九寨沟县发生里氏级地震的()A.倍 B.倍C.倍 D.倍3.已知向量,满足,,且,则()A. B.2C. D.4.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)5.在中,,则的值为A. B.C. D.26.三个数的大小关系是()A. B.C. D.7.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为A. B.C. D.8.若,为第四象限角,则的值为()A. B.C. D.9.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-2210.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④11.给出下列四个命题:①底面是正多边形的棱柱是正棱柱;②四棱柱、四棱台、五棱锥都是六面体;③所有棱长相等的棱柱一定是直棱柱;④直角三角形绕其一条边所在的直线旋转一周形成的几何体是圆锥其中正确的命题个数是()A.0 B.1C.2 D.312.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.二、填空题(本大题共4小题,共20分)13.当,,满足时,有恒成立,则实数的取值范围为____________14.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.15.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.16.已知的图象的对称轴为_________________三、解答题(本大题共6小题,共70分)17.对正整数n,记In={1,2,3…,n},Pn={|m∈In,k∈In}(1)求集合P7中元素的个数;(2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为“稀疏集”.求n的最大值,使Pn能分成两个不相交的稀疏集的并18.某种商品的市场需求量(万件)、市场供应量(万件)与市场价格(元/件)分别近似地满足下列关系:,.当时的市场价格称为市场平衡价格,此时的需求量称为平衡需求量(1)求平衡价格和平衡需求量;(2)若该商品的市场销售量(万件)是市场需求量和市场供应量两者中的较小者,该商品的市场销售额(万元)等于市场销售量与市场价格的乘积①当市场价格取何值时,市场销售额取得最大值;②当市场销售额取得最大值时,为了使得此时市场价格恰好是新的市场平衡价格,则政府应该对每件商品征税多少元?19.已知(1)若a=2,求(2)已知全集,若,求实数a的取值范围20.已知,,计算:(1)(2)21.已知的三个内角所对的边分别为,且.(1)角的大小;(2)若点在边上,且,,求的面积;(3)在(2)的条件下,若,试求的长.22.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元(1)写出年利润万元关于年销售量万部的函数解析式;(2)年销售量为多少万部时,利润最大,并求出最大利润.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】,选D点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2、C【解析】设里氏级和级地震释放出的能量分别为和,可得出,利用对数的运算性质可求得的值,即可得解.【详解】设里氏级和级地震释放出的能量分别为和,由已知可得,则,故故选:C.3、B【解析】根据向量数量积模的公式求,再代入模的公式,求的值.【详解】因为,所以,则,所以,故故选:B4、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题5、C【解析】直接利用三角函数关系式的恒等变换和特殊角的三角函数的值求出结果【详解】在中,,则,,,,故选C【点睛】本题考查的知识要点:三角函数关系式的恒等变换和特殊角三角函数的值的应用,主要考查学生的运算能力和转化能力,属于基础题型6、A【解析】利用指数函数、对数函数、正弦函数的单调性结合中间量法即可求解【详解】解:,,,故选:A7、A【解析】由题意利用函数的图象变换法则,即可得出结论【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选【点睛】本题主要考查函数的图象变换法则,注意对的影响8、D【解析】直接利用平方关系即可得解.【详解】解:因为,为第四象限角,所以.故选:D.9、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.10、A【解析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A11、B【解析】利用几何体的结构特征,几何体的定义,逐项判断选项的正误即可【详解】解:①底面是正多边形,侧棱与底面垂直的棱柱是正棱柱;所以①不正确;②四棱柱、四棱台、五棱锥都是六面体;满足多面体的定义,所以②正确;③所有棱长相等的棱柱一定是直棱柱;不满足直棱柱的定义,所以③不正确;④直角三角形绕直角边所在的直线旋转一周形成的几何体是圆锥.所以④不正确;故选:B12、A【解析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形二、填空题(本大题共4小题,共20分)13、【解析】根据基本不等式求得的最小值,由此建立不等式,求解即可.【详解】解:,,则,∴,当且仅当,即:时取等号,∴,∴,∴实数的取值范围为故答案为:.14、【解析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【点睛】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.15、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.16、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:三、解答题(本大题共6小题,共70分)17、(1)46(2)n的最大值为14【解析】(1)对于集合P7,有n=7.当k=4时,Pn={|m∈In,k∈In}中有3个数(1,2,3)与In={1,2,3…,n}中的数重复,由此求得集合P7中元素的个数为7×7﹣3=46(2)先证当n≥15时,Pn不能分成两个不相交的稀疏集的并集.否则,设A和B为两个不相交的稀疏集,使A∪B=Pn⊇In不妨设1∈A,则由于1+3=22,∴3∉A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,这与A为稀疏集相矛盾再证P14满足要求.当k=1时,P14={|m∈I14,k∈I14}=I14,可以分成2个稀疏集的并集事实上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},则A1和B1都稀疏集,且A1∪B1=I14当k=4时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,…,},可以分为下列3个稀疏集的并:A2={,,,},B2={,,}当k=9时,集合{|m∈I14}中,除整数外,剩下的数组成集合{,,,,…,,},可以分为下列3个稀疏集的并:A3={,,,,},B3={,,,,}最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9}中的数的分母都是无理数,它与Pn中的任何其他数之和都不是整数,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,则A和B是不相交的稀疏集,且A∪B=P14综上可得,n的最大值为1418、(1)平衡价格是30元,平衡需求量是40万件.(2)①市场价格是35元时,市场总销售额取得最大值.②政府应该对每件商品征7.5元【解析】(1)令,得,可得,此时,从而可得结果;(2)①先求出,从而得,根据二次函数的性质分别求出两段函数的最值再比较大小即可的结果;②政府应该对每件商品征税元,则供应商的实际价格是每件元,根据可得结果.试题解析:(1)令,得,故,此时答:平衡价格是30元,平衡需求量是40万件(2)①由,,得,由题意可知:故当时,,即时,;当时,,即时,,综述:当时,时,答:市场价格是35元时,市场总销售额取得最大值②设政府应该对每件商品征税元,则供应商的实际价格是每件元,故,令,得,由题意可知上述方程的解是,代入上述方程得答:政府应该对每件商品征7.5元.【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者)19、(1);(2).【解析】(1)根据解绝对值不等式的方法,结合二次根式的性质、集合交集的定义进行求解即可;(2)根据解绝对值不等式的方法、集合补集的定义,结合子集的性质进行求解即可.【小问1详解】当a=2时,因为,,所以;【小问2详解】,因为,所以,因此有或,解得或,因此实数a的取值范围为.20、(1);(2).【解析】(1)先把化为,然后代入可求;(2)先把化为,然后代入可求.【详解】(1);(2).【点睛】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.21、(1);(2);(3).【解析】(1)由条件知,结合正弦定理得,整理得,可得,从而得.(2)由,得.在中,由正弦定理得.在中,由余弦定理可得.所以.(3)由,可得.在中,由余弦定理得试题解析:(1),由正弦定理得,∴,∴,∵,∴,∵,∴.(2)由,得,在中,由正弦定理知,∴,解得,设,在中,由余弦定理得,∴,整理得解得,∴;(3)∵,∴,在中,由余弦定理得∴.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论