广东省珠海市紫荆中学2024届数学高一上期末监测模拟试题含解析_第1页
广东省珠海市紫荆中学2024届数学高一上期末监测模拟试题含解析_第2页
广东省珠海市紫荆中学2024届数学高一上期末监测模拟试题含解析_第3页
广东省珠海市紫荆中学2024届数学高一上期末监测模拟试题含解析_第4页
广东省珠海市紫荆中学2024届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省珠海市紫荆中学2024届数学高一上期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数在上是增函数,则实数的取值范围为()A. B.C. D.2.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度3.已知全集,,,则等于()A. B.C. D.4.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.5.已知全集,集合,集合,则集合A. B.C. D.6.函数的最小值为()A.1 B.C. D.7.已知,则的值等于()A. B.C. D.8.已知函数的定义域为,集合,若中的最小元素为2,则实数的取值范围是:A. B.C. D.9.已知函数,,的零点分别为则的大小顺序为()A. B.C. D.10.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,若集合A有且仅有2个子集,则a的取值构成的集合为________.12.函数的图象关于原点对称,则__________13.若函数的定义域为R,则实数m的取值范围是______14.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难人微;数形结合百般好,隔裂分家万事休,在数学学习和研究中,常用函数的图象来研究函数的性质.请写出一个在上单调递增且图象关于y轴对称的函数:________________15.在半径为5的圆中,的圆心角所对的扇形的面积为_______.16.函数定义域为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)判断函数在R上的单调性,并用单调性的定义证明;(2)判断函数的奇偶性,并证明;(3)若恒成立,求实数k的取值范围.18.设,函数在上单调递减.(1)求;(2)若函数在区间上有且只有一个零点,求实数k的取值范围.19.在①;②函数为偶函数:③0是函数的零点这三个条件中选一个条件补充在下面问题中,并解答下面的问题问题:已知函数,,且______(1)求函数的解析式;(2)判断函数在区间上的单调性,并用定义证明注:如果选择多个条件分别解答,按第一个解答计分20.已知角α的终边经过点P.(1)求sinα的值;(2)求的值.21.已知二次函数满足且(1)求的解析式;(2)在区间上求的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D2、B【解析】直接利用三角函数的平移变换求解.【详解】因函数y=cos,所以要得到函数y=cos的图象,只需将函数y=cos2的图象向左平移个单位长度,故选:B【点睛】本题主要考查三角函数的图象的平移变换,属于基础题.3、D【解析】利用补集和并集的定义即可得解.【详解】,,,,,.故选:D.【点睛】本题主要考查集合的基本运算,熟练掌握补集和并集的定义是解决本题的关键,属于基础题.4、D【解析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.5、A【解析】,所以,故选A.考点:集合运算.6、D【解析】根据对数的运算法则,化简可得,分析即可得答案.【详解】由题意得,当时,的最小值为.故选:D7、B【解析】由分段函数的定义计算【详解】,,所以故选:B8、C【解析】本题首先可以求出集合以及集合中所包含的元素,然后通过交集的相关性质以及中的最小元素为2即可列出不等式组,最后求出实数的取值范围【详解】函数,,或者,所以集合,,,,所以集合,因为中的最小元素为2,所以,解得,故选C【点睛】本题考查了集合的相关性质,主要考查了交集的相关性质、函数的定义域、带绝对值的不等式的求法,考查了推理能力与计算能力,考查了化归与转化思想,提升了学生的逻辑思维,是中档题9、C【解析】利用数形结合,画出函数的图象,判断函数的零点的大小即可【详解】函数,,的零点转化为,,与的图象的交点的横坐标,因为零点分别为在坐标系中画出,,与的图象如图:可知,,,满足故选:10、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得出方程有唯一实数解或有两个相等的实数解,然后讨论并求解当和时满足题意的参数的值.【详解】∵集合A有且仅有2个子集,可得A中仅有一个元素,即方程仅有一个实数解或有两个相等的实数解.当时,方程化为,∴,此时,符合题意;当时,则由,,令时解方程得,此时,符合题意,令时解方程得,此时符合题意;综上可得满足题意的参数可能的取值有0,-1,1,∴a的取值构成的集合为.故答案为:.【点睛】本题考查了由集合子集的个数求参数的问题,考查了分类讨论思想,属于一般难度的题.12、【解析】根据余弦型函数的对称性可得出结果.【详解】函数的图象关于原点对称,则.故答案为:.13、【解析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:14、(答案不唯一)【解析】利用函数的单调性及奇偶性即得.【详解】∵函数在上单调递增且图象关于y轴对称,∴函数可为.故答案为:.15、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.16、∪【解析】根据题意列出满足的条件,解不等式组【详解】由题意得,即,解得或,从而函数的定义域为∪.故答案为:∪.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)在R上的单调递增,证明见解析;(2)是奇函数,证明见解析;(3).【解析】(1)利用单调性的定义证明,任取,设,然后判断与0的大小,即可确定单调性.(2),直接利用函数奇偶性的定义判断;(3)利用函数是奇函数,将题设不等式转化为,再利用是上的单调增函数求解.【小问1详解】函数是增函数,任取,不妨设,,∵,∴,又,∴,即,∴函数是上的增函数.【小问2详解】函数为奇函数,证明如下:由解析式可得:,且定义域为关于原点对称,,∴函数是定义域内的奇函数.【小问3详解】由等价于,∵是上的单调增函数,∴,即恒成立,∴,解得.18、(1);(2).【解析】(1)分析得到关于的不等式,解不等式即得解;(2)等价于函数与函数的图象在区间上有且只有一个交点,再对分类讨论得解.【小问1详解】解:因为,在上单调递减,所以,解得.又,且,解得.综上,.【小问2详解】解:由(1)知,所以.由于函数在区间上有且只有一个零点,等价于函数与函数的图象在区间上有且只有一个交点.①当即时,函数单调递增,,于是有,解得;②当即时,函数先增后减有最大值,于是有即,解得.故k的取值范围为.19、(1)(2)单调递增,证明见解析【解析】(1)若选条件①,根据及指数对数恒等式求出的值,即可求出函数解析式;若选条件②,根据,即可得到,从而求出的值,即可求出函数解析式;若选条件③,直接代入即可得到方程,求出的值,即可求出函数解析式;(2)利用定义法证明函数单调性,按照设元、作差、变形、判断符号、下结论的步骤完成即可;【小问1详解】解:若选条件①.因为,所以,即解得.所以若选条件②.函数的定义域为R.因为为偶函数,所以,,即,,化简得,所以,即.所以若选条件③.由题意知,,即,解得.所以【小问2详解】解:函数在区间上单调递增证明如下:,,且,则因为,,,所以,即又因为,所以,即所以,即所以在区间上单调递增20、(1);(2)【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论