版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南平市建瓯芝华中学2023-2024学年高一上数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)2.设则()A. B.C. D.3.函数的定义域是()A.(-1,1) B.C.(0,1) D.4.已知关于的方程的两个实数根分别是、,若,则的取值范围为()A. B.C. D.5.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.116.已知函数在上图像关于轴对称,若对于,都有,且当时,,则的值为()A. B.C. D.7.C,S分别表示一个扇形的周长和面积,下列能作为有序数对取值的是()A. B.C. D.8.函数的零点在A. B.C. D.9.以下元素的全体不能够构成集合的是A.中国古代四大发明 B.周长为的三角形C.方程的实数解 D.地球上的小河流10.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,则函数的最大值为___________,最小值为___________.12.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.6000)≈0.200f(1.5875)≈0.133f(1.5750)≈0.067f(1.5625)≈0.003f(1.5562)≈-0.029f(1.5500)≈-0.060据此数据,可得方程3x-x-4=0的一个近似解为________(精确到0.01)13.若点位于第三象限,那么角终边落在第___象限14.若且,则取值范围是___________15.已知圆:,为圆上一点,、、,则的最大值为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.计算下列各式的值(1);(2)已知,求17.已知全集为实数集R,集合,求,;已知集合,若,求实数a的取值范围18.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.19.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.20.已知cosα=-,α第三象限角,求(1)tanα的值;(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)的值21.在①函数;②函数;③函数的图象向右平移个单位长度得到的图象,的图象关于原点对称;这三个条件中任选一个作为已知条件,补充在下面的问题中,然后解答补充完整的题已知______(只需填序号),函数的图象相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)求函数的单调递减区间及其在上的最值注:若选择多个条件分别解答,则按第一个解答计分.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】列不等式求解【详解】,解得故选:B2、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.3、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B4、D【解析】利用韦达定理结合对数的运算性质可求得的值,再由可求得实数的取值范围.【详解】由题意,知,因为,所以.又有两个实根、,所以,解得.故选:D.5、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C6、C【解析】据条件即可知为偶函数,并且在,上是周期为2的周期函数,又,时,,从而可得出,,从而找出正确选项【详解】解:函数在上图象关于轴对称;是偶函数;又时,;在,上为周期为2的周期函数;又,时,;,;故选:【点睛】考查偶函数图象的对称性,偶函数的定义,周期函数的定义,以及已知函数求值,属于中档题7、B【解析】设扇形半径为,弧长为,则,,根据选项代入数据一一检验即可【详解】设扇形半径为,弧长为,则,当,有,则无解,故A错;当,有得,故B正确;当,有,则无解,故C错;当,有,则无解,故D错;故选:B8、B【解析】利用零点的判定定理检验所给的区间上两个端点的函数值,当两个函数值符号相反时,这个区间就是函数零点所在的区间.【详解】函数定义域为,,,,,因为,根据零点定理可得,在有零点,故选B.【点睛】本题考查函数零点的判定定理,本题解题的关键是看出函数在所给的区间上对应的函数值的符号,此题是一道基础题.9、D【解析】地球上的小河流不确定,因此不能够构成集合,选D.10、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、①.②.【解析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;12、56【解析】注意到f(1.5562)=-0.029和f(1.5625)=0.003,显然f(1.5562)f(1.5625)<0,故区间的端点四舍五入可得1.56.13、四【解析】根据所给的点在第三象限,写出这个点的横标和纵标都小于0,根据这两个都小于0,得到角的正弦值小于0,余弦值大于0,得到角是第四象限的角【详解】解:∵点位于第三象限,∴sinθcosθ<02sinθ<0,∴sinθ<0,Cosθ>0∴θ是第四象限的角故答案为四【点睛】本题考查三角函数的符号,这是一个常用到的知识点,给出角的范围要求说出三角函数的符号,反过来给出三角函数的符号要求看出角的范围14、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或15、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)1【解析】(1)根据对数和指数幂的运算性质计算即可得出答案.(2)利用诱导公式化简目标式,然后分子分母同时除以,代入即可得出答案.【小问1详解】原式=;【小问2详解】原式=.17、(1);(2).【解析】(1)借助题设条件求集合,再求其交集与补集;(2)借助题设运用数轴分类建立不等式组求解.试题解析:(1),(2)(i)当时,,此时.(ii)当时,,则综合(i)(ii),可得的取值范围是考点:函数的定义域集合的运算等有关知识的综合运用.18、(1);(2)【解析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,利用频率估计概率,得:,则,某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:.【点睛】关键点点睛:本题解题的关键是利用频率表示概率.19、(I).(II)【解析】解:(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为.(II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为.考点:古典概型点评:主要是考查了古典概型的运用,属于基础题20、(1);(2).【解析】(1)根据为第三象限角且求出的值,从而求出的值(1)将原式利用诱导公式化简以后将的值代入即可得解【详解】解:(1)∵cosα=-,α是第三象限角,∴sinα=-=-,tanα==2(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)=-sinα•cosα•sinα+cosα•(-sinα)•(-tanα)=-cosαsin2α+sin2α=•+=【点睛】当已知正余弦的某个值且知道角的取值范围时可直接利用同角公式求出另外一个值.关于诱导公式化简需注意“奇变偶不变,符号看象限”21、(1)条件选择见解析,(2)单调递减区间为,最小值为,最大值为2【解析】(1)选条件①:利用同角三角函数的关系式以及两角和的正弦公式和倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件②:利用两角和的正弦公式以及倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园资产使用规定
- 绿色环保工艺指南
- 萤石矿建设延期协议
- 互联网医疗平台网络部署协议
- 产权过户协议样本
- 通讯设备租赁协议样本
- 液态食品罐体清洗服务协议
- 医药行业关联交易道德规范
- 智能交通国标施工合同模板
- 画廊装修改造工装合同
- 国开电大本科《管理英语3》机考真题(第六套)
- 《管理的实践》读后感课件
- 可编程控制器课程设计报告可编程控制器课程设计报告八篇
- 技术服务和质保期服务计划
- 年度供应商审核计划表
- 题型汇编丨2023届高考化学反应原理综合题图像说理总结
- 风景谈(第二课时)(教师中心稿) 教案教学设计共3篇
- 初中生物新《课程标准》测试题库及答案
- Sample-Invoice-样品发票模板1
- 科研伦理与学术规范期末试题
- 篮球一对一攻防练习教案
评论
0/150
提交评论