版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省晋江市安溪一中、养正中学、惠安一中、泉州实验中学2023-2024学年高一数学第一学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.设函数y=,当x>0时,则y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值82.比较,,的大小()A. B.C. D.3.下列说法错误的是()A.球体是旋转体 B.圆柱的母线垂直于其底面C.斜棱柱的侧面中没有矩形 D.用正棱锥截得的棱台叫做正棱台4.已知直线⊥平面,直线平面,给出下列命题:①∥②⊥∥③∥⊥④⊥∥其中正确命题的序号是A.①③ B.②③④C.①②③ D.②④5.箱子中放有一双红色和一双黑色的袜子,现从箱子中同时取出两只袜子,则取出的两只袜子正好可以配成一双的概率为()A. B.C. D.6.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.437.设是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则;②若,,,则;③若,,则;④若,,则.其中正确命题的序号是A.① B.②和③C.③和④ D.①和④8.某时钟的秒针端点A到中心点O的距离为5cm,秒针绕点O匀速旋转,当时间:t=0时,点A与钟面上标12的点B重合,当t∈[0,60],A,B两点间的距离为d(单位:A.5sintC.5sinπt9.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]10.已知,,若对任意,或,则的取值范围是A. B.C. D.11.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)12.已知角的终边过点,则()A. B.C. D.1二、填空题(本大题共4小题,共20分)13.若函数在单调递增,则实数的取值范围为________14.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________15.设常数使方程在闭区间上恰有三个不同的解,则实数的取值集合为________,_______16.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____三、解答题(本大题共6小题,共70分)17.读下列程序,写出此程序表示的函数,并求当输出的时,输入的的值.18.(1)已知,,求的值;(2)若,求的值.19.某次数学考试后,抽取了20名同学的成绩作为样本绘制了频率分布直方图如下:(1)求频率分布直方图中的值;(2)求20位同学成绩的平均分;(3)估计样本数据的第一四分位数和第80百分位数(保留三位有效数字)20.如图,正方体的棱长为,连接,,,,,,得到一个三棱锥.求:(1)三棱锥的表面积;(2)三棱锥的体积21.计算求解(1)(2)已知,,求的值22.已知.(Ⅰ)当时,若关于的方程有且只有两个不同的实根,求实数的取值范围;(Ⅱ)对任意时,不等式恒成立,求的值.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由均值不等式可得答案.【详解】由,当且仅当,即时等号成立.当时,函数的函数值趋于所以函数无最大值,有最小值4故选:B2、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.3、C【解析】利用空间几何体的结构特征可得.【详解】由旋转体的概念可知,球体是旋转体,故A正确;圆柱的母线平行于圆柱的轴,垂直于其底面,故B正确;斜棱柱的侧面中可能有矩形,故C错误;用正棱锥截得的棱台叫做正棱台,故D正确.故选:C.4、A【解析】利用线面、面面平行的性质和判断以及线面、面面垂直的性质和判断可得结果.【详解】②若,则与不一定平行,还可能为相交和异面;④若,则与不一定平行,还可能是相交.故选A.【点睛】本题是一道关于线线、线面、面面关系的题目,解答本题的关键是熟练掌握直线与平面和平面与平面的平行、垂直的性质定理和判断定理.5、B【解析】先求出试验的样本空间,再求有利事件个数,最后用概率公式计算即可.【详解】两只红色袜子分别设为,,两只黑色袜子分别设为,,这个试验的样本空间可记为,共包含6个样本点,记为“取出的两只袜子正好可以配成一双”,则,包含的样本点个数为2,所以.故选:B6、C【解析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【点睛】本题考查系统抽样,等间距抽取,属于简单题.7、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】①选项成立,结合直线与平面垂直的性质,即可;②选项,m可能属于,故错误;③选项,m,n可能异面,故错误;④选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.8、D【解析】由题知圆心角为tπ30,过O作AB的垂线,通过计算可得d【详解】由题知,圆心角为tπ30,过O作AB的垂线,则故选:D9、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.10、C【解析】先判断函数g(x)的取值范围,然后根据或成立求得m的取值范围.【详解】∵g(x)=﹣2,当x<时,恒成立,当x≥时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立,即m(x﹣2m)(x+m+3)<0在x≥时恒成立,则二次函数y=m(x﹣2m)(x+m+3)图象开口只能向下,且与x轴交点都在(,0)的左侧,∴,即,解得<m<0,∴实数m的取值范围是:(,0)故选C【点睛】本题主要考查指数函数和二次函数的图象和性质,根据条件确定f(x)=m(x﹣2m)(x+m+3)<0在x≥时恒成立是解决本题的关键,综合性较强,难度较大11、B【解析】列不等式求解【详解】,解得故选:B12、B【解析】根据三角函数的定义求出,再根据二倍角余弦公式计算可得;【详解】解:∵角的终边过点,所以,∴,故故选:B二、填空题(本大题共4小题,共20分)13、【解析】根据复合函数单调性性质将问题转化二次函数单调性问题,注意真数大于0.【详解】令,则,因为为减函数,所以在上单调递增等价于在上单调递减,且,即,解得.故答案为:14、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:215、①.②.【解析】利用辅助角公式可将问题转化为在上直线与三角函数图象的恰有三个交点,利用数形结合可确定的取值;由的取值可求得的取值集合,从而确定的值,进而得到结果.【详解】,方程的解即为在上直线与三角函数图象的交点,由图象可知:当且仅当时,直线与三角函数图象恰有三个交点,即实数的取值集合为;,或,即或,此时,,,.故答案为:;.【点睛】思路点睛:本题考查与三角函数有关的方程根的个数问题,解决方程根的个数的基本思路是将问题转化为两函数交点个数问题,从而利用数形结合的方式来进行求解.16、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:三、解答题(本大题共6小题,共70分)17、【解析】阅读程序框图可知,此程序表示的函数为,当时,得.当时,得.试题解析:此程序表示的函数为,当时,得.当时,得.故当输出的时,输入的,故答案为.18、(1);(2).【解析】(1)由条件利用同角三角函数的基本关系求出,即可求得的值;(2)把要求的式子利用诱导公式化为,进而而求得结果.【详解】解:(1)∵,,∴∴(2)若,则.19、(1);(2);(3)第一四分位数为70.0;第80分位数为【解析】(1)根据频率分布直方图中的频率之和为1即可求解;(2)根据频率分布直方图中平均数的计算公式即可求解;(3)根据题意,结合百分位数的概念与计算公式,即可求解.【详解】(1)依图可得:,解得:(2)根据题意得,(3)由图可知,,,,,对应频率分别为:0.1,0.15,0.35,0.3,0.1,前两组频率之和恰为0.25,故第一四分位数为70.0前三组频率之和为0.6,前四组频率之和为0.9,所以第80分位数在第四组设第80分位数为,则,解得:20、(1)(2)【解析】(1)直接按照锥体表面积计算即可;(2)利用正方体体积减去三棱锥,,,的体积即可.【小问1详解】∵是正方体,∴,∴三棱锥的表面积为【小问2详解】三棱锥,,,是完全一样的且正方体的体积为,故21、(1);(2).【解析】(1)利用对数运算法则直接计算作答.(2)利用对数换底公式及对数运算法则计算作答.【小问1详解】.【小问2详解】因,,所以.22、(Ⅰ);(Ⅱ)1.【解析】(Ⅰ)当时,,结合图象可得若方程有且只有两个不同的实根,只需即可.(Ⅱ)由题意得只需满足即可,根据函数图象的对称轴与区间的关系及抛物线的开口方向求得函数的最值,然后解不等式可得所求试题解析:(Ⅰ)当时,,∵关于的方程有且只有两个不同的实根,∴,∴.∴实数的取值范围为(Ⅱ)①当,即时,函数在区间上单调递增,∵不等式恒成立,∴,可得,∴解得,与矛盾,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石厂股东合同范例
- 2024年度企业核心人事经理职位竞聘合同3篇
- 2024年度企业员工岗位说明书与绩效考核劳动合同3篇
- 2024年新款小汽车短期租赁服务合同一
- 楼宇广告租赁合同范例
- 香烟包装采购合同范例
- 2024版动产抵押担保融资租赁合同范本3篇
- 锻件毛坯合同范例
- 2024年山地绿化养护承包3篇
- 2024年度矿产交易与中介居间协议3篇
- SB/T 10421-2007农家乐经营服务规范
- 水产养殖项目节能评估报告
- 强夯试夯报告
- 新概念物理教程 力学答案详解(六)
- 国开电大 财务报表分析 形考任务作业1-4答案
- 初中篮球教学案例八年级体质课案-【教学参考】
- 糖尿病患者的麻醉管理课件
- 生产线外包方案
- 《测绘工程产品价格》和《测绘工程产品困难类别细则》
- 生产现场定置管理规定区域划分、标识牌、工具摆放标准
- 接口类验收报告
评论
0/150
提交评论