福建省福州市闽侯八中2024届高一上数学期末联考试题含解析_第1页
福建省福州市闽侯八中2024届高一上数学期末联考试题含解析_第2页
福建省福州市闽侯八中2024届高一上数学期末联考试题含解析_第3页
福建省福州市闽侯八中2024届高一上数学期末联考试题含解析_第4页
福建省福州市闽侯八中2024届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市闽侯八中2024届高一上数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对于空间两不同的直线,两不同的平面,有下列推理:(1),(2),(3)(4),(5)其中推理正确的序号为A.(1)(3)(4) B.(2)(3)(5)C.(4)(5) D.(2)(3)(4)(5)2.已知集合,,若,则实数的值为()A. B.C. D.3.农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):甲:9,10,11,12,10,20;乙:8,14,13,10,12,21.根据所抽取的甲、乙两种麦苗的株高数据,给出下面四个结论,其中正确的结论是()A.甲种麦苗样本株高的平均值大于乙种麦苗样本株高的平均值B.甲种麦苗样本株高的极差小于乙种麦苗样本株高的极差C.甲种麦苗样本株高的75%分位数为10D.甲种麦苗样本株高的中位数大于乙种麦苗样本株高的中位数4.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.45.函数的图象大致()A. B.C. D.6.已知函数函数有四个不同的零点,,,,且,则()A.1 B.2C.-1 D.7.把表示成,的形式,则的值可以是()A. B.C. D.8.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则=A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}9.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.10.下列四组函数中,表示相同函数的一组是()A.,B.,C.,D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________12.若函数满足,且当时,则______13.已知定义在上的函数,满足不等式,则的取值范围是______14.若函数在区间上为增函数,则实数的取值范围为______.15.已知函数的零点为,不等式的最小整数解为,则__________16.已知函数有两个零点分别为a,b,则的取值范围是_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若,求不等式的解集;(2)若时,不等式恒成立,求的取值范围.18.已知函数.(1)在平面直角坐标系中画出函数的图象;(不用列表,直接画出草图.(2)根据图象,直接写出函数的单调区间;(3)若关于的方程有四个解,求的取值范围19.已知直线(1)求直线的斜率;(2)若直线m与平行,且过点,求m的方程.20.设直线l的方程为.(1)若l在两坐标轴上的截距相等,求直线l的方程(2)若l在两坐标轴上的截距互为相反数,求a.21.已知函数.(1)求函数的定义域;(2)若实数,且,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为时,可以在平面内,所以(1)不正确;因为时,可以在平面内,所以(2)不正确;因为时可以在平面内,所以(3)不正确;根据线面垂直的性质定理可得,(4)正确;根据线面平行的性质及线面垂直的性质可得(5)正确,推理正确的序号为(4)(5),故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.2、B【解析】根据集合,,可得,从而可得.【详解】因为,,所以,所以.故选:B3、B【解析】对A,由平均数求法直接判断即可;由极差概念可判断B,结合百分位数概念可求C;将甲乙两组数据排序,可判断D.【详解】甲组数据的平均数为9+10+11+12+10+206=12,乙组数据的平均数为8+14+13+10+12+216甲种麦苗样本株高的极差为11,乙种麦苗样本株高的极差为13,故B正确;6×0.75=4.5,故甲种麦苗样本株高的75%分位数为第5位数,为12,故C错误;甲种麦苗样本株高的中位数为10.5,乙种麦苗样本株高的中位数为12.5,故D错误.故选:B4、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力5、A【解析】根据对数函数的图象直接得出.【详解】因为,根据对数函数的图象可得A正确.故选:A.6、D【解析】将问题转化为两个函数图象的交点问题,然后结合图象即可解答.【详解】有四个不同的零点,,,,即方程有四个不同的解的图象如图所示,由二次函数的对称性,可得.因为,所以,故故选:D7、B【解析】由结合弧度制求解即可.【详解】∵,∴故选:B8、C【解析】根据补集的运算得.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误9、B【解析】根据二次函数的单调性可得出关于的不等式,即可得解.【详解】因为函数在区间上单调递增,则,解得.故选:B.10、C【解析】根据相同函数的判断原则进行定义域的判断即可选出答案.【详解】解:由题意得:对于选项A:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故A错误;对于选项B:的定义域为,的定义域为,所以这两个函数的定义域不同,不表示相同的函数,故B错误;对于选项C:的定义域为,的定义域为,这两函数的定义域相同,且对应关系也相同,所以表示相同的函数,故C正确;对于选项D:的定义域为,的定义域为或,所以这两个函数的定义域不同,不表示相同的函数,故D错误.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.12、1009【解析】推导出,当时,从而当时,,,由此能求出的值【详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【点睛】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题13、【解析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【点睛】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题14、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:15、8【解析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.16、【解析】根据函数零点可转化为有2个不等的根,利用对数函数的性质可知,由均值不等式求解即可.详解】不妨设,因为函数有两个零点分别为a,b,所以,所以,即,且,,当且仅当,即时等号成立,此时不满足题意,,即,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)把代入函数解析式,求解关于的一元二次不等式,进一步求解指数不等式得答案;(2)不等式恒成立,等价于恒成立,求出时的范围,可得,即可求出的取值范围【详解】解:(1)当时,即:,则不等式的解集为(2)∵由条件:∴∴恒成立∵即的取值范围是【点睛】解不等式的常见类型:(1)一一二次不等式用因式分解法或图像法;(2)指对数型不等式化为同底的结构,利用单调性解不等式;(3)解抽象函数型不等式利用函数的单调性18、(1)作图见解析;(2)增区间为和;减区间为和;(3).【解析】(1)化简函数的解析式为分段函数,结合二次函数的图象与性质,即可画出函数的图象;(2)由(1)中的图象,直接写出函数的单调区间;(3)把方程有四个解等价于函数与的图象有四个交点,利用函数的图象,即可求解.【详解】(1)由题意,函数,所以的图象如右图所示:(2)由(1)中的函数图象,可得函数的单调增区间为和,单调减区间为和.(3)由方程有四个解等价于函数与的图象有四个交点,又由函数的最小值为,结合图象可得,即实数的取值范围19、(1);(2).【解析】(1)将直线变形为斜截式即可得斜率;(2)由平行可得斜率,再由点斜式可得结果.【详解】(1)由,可得,所以斜率为;(2)由直线m与平行,且过点,可得m的方程为,整理得:.20、(1)3x+y=0或x+y+2=0.(2)a=2或a=-2【解析】(1)直线在两坐标轴上的截距相等,有两种情况:截距为0和截距不为0,分别求出两种情况下的a的值,即得直线l的方程;(2)直线在两坐标轴上的截距互为相反数,由(1)可知有,解方程可得a。【详解】(1)当直线过原点时,该直线在x轴和y轴上截距为零,∴a=2,方程即为,当直线不经过原点时,截距存在且均不为0.∴,即a+1=1.∴a=0,方程即为x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论