版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省五指山中学2024届高一上数学期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.长方体中,,,则直线与平面ABCD所成角的大小A. B.C. D.2.已知是定义在上的奇函数,且,若对任意,都有成立,则的值为()A.2022 B.2020C.2018 D.03.已知,则a,b,c的大小关系是()A. B.C. D.4.为了得到函数的图象,只需将余弦曲线上所有的点A.向右平移个单位 B.向左平移个单位C向右平移个单位 D.向左平移个单位5.定义在上的偶函数在时为增函数,若实数满足,则的取值范围是A. B.C. D.6.已知,,,则a,b,c大小关系为()A. B.C. D.7.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1008.下列函数中,既是奇函数又是定义域内的增函数为()A. B.C. D.9.圆与圆的位置关系是A.相离 B.外切C.相交 D.内切10.已知全集,集合则下图中阴影部分所表示的集合为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.12.已知函数,则当_______时,函数取得最小值为_________.13.已知函数(,且)的图象恒过定点,且点在幂函数的图象上,则__________.14.已知角的终边过点,求_________________.15.函数的部分图像如图所示,轴,则_________,_________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.年,全世界范围内都受到“新冠”疫情的影响,了解某些细菌、病毒的生存条件、繁殖习性等对于预防疾病的传播、保护环境有极其重要的意义.某科研团队在培养基中放入一定量某种细菌进行研究.经过分钟菌落的覆盖面积为,经过分钟覆盖面积为,后期其蔓延速度越来越快;现菌落的覆盖面积(单位:)与经过时间(单位:)的关系有两个函数模型与可供选择.(参考数据:,,,,,,)(1)试判断哪个函数模型更合适,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多久培养基中菌落面积能超过?(结果保留到整数)17.设函数,是定义域为R的奇函数(1)确定的值(2)若,判断并证明的单调性;(3)若,使得对一切恒成立,求出的范围.18.已知函数(1)判断f(x)的奇偶性,并说明理由;(2)用定义证明f(x)在(1,+∞)上单调递增;(3)求f(x)在[-2,-1]上的值域19.已知.(1)求函数的定义域;(2)判断函数的奇偶性,并加以说明;(3)求的值.20.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.21.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.2、D【解析】利用条件求出的周期,然后可得答案.【详解】因为是定义在上的奇函数,且,所以,所以,所以即的周期为4,所以故选:D3、B【解析】根据指数函数的单调性、对数函数的单调性可得答案.【详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B4、C【解析】利用函数的图象变换规律,得出结论【详解】把余弦曲线上所有的点向右平行移动个单位长度,可得函数的图象,故选C【点睛】本题主要考查函数的图象变换规律,属于基础题5、C【解析】因为定义在上的偶函数,所以即又在时为增函数,则,解得故选点睛:本题考查了函数的奇偶性,单调性和运用,考查对数不等式的解法及运算能力,所求不等式中与由对数式运算法则可知互为相反数,与偶函数的性质结合可将不等式化简,借助函数在上是增函数可确定在为减函数,利用偶函数的对称性可得到自变量的范围,从而求得关于的不等式,结合对数函数单调性可得到的取值范围6、B【解析】利用对数函数的单调性证明即得解.【详解】解:,,所以故选:B7、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.8、D【解析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A,的定义域为,而,但,故在定义域上不是增函数,故A错误.对于B,的定义域为,它不关于原点对称,故该函数不是奇函数,故B错误.对于C,因为时,,故在定义域上不是增函数,故C错误.对于D,因为为幂函数且幂指数为3,故其定义域为R,且为增函数,而,故为奇函数,符合.故选:D.9、D【解析】圆的圆心,半径圆的圆心,半径∴∴∴两圆内切故选D点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系(2)切线法:根据公切线条数确定10、C【解析】根据题意,结合Venn图与集合间的基本运算,即可求解.【详解】根据题意,易知图中阴影部分所表示.故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、﹣8【解析】根据AC的斜率等于AB的斜率得到,解方程即得解.【详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【点睛】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.12、①.##②.【解析】根据求出的范围,根据余弦函数的图像性质即可求其最小值.【详解】∵,∴,∴当,即时,取得最小值为,∴当时,最小值为.故答案为:;-3.13、【解析】先求出定点的坐标,再代入幂函数,即可求出解析式.【详解】令可得,此时,所以函数(,且)的图象恒过定点,设幂函数,则,解得,所以,故答案为:【点睛】关键点点睛:本题的关键点是利用指数函数的性质和图象的特点得出,设幂函数,代入即可求得,.14、【解析】先求出,再利用三角函数定义,即可得出结果.【详解】依题意可得:,故答案为:【点睛】本题考查了利用终边上点来求三角函数值,考查了理解辨析能力和运算能力,属于基础题目.15、①.2②.##【解析】根据最低点的坐标和函数的零点,可以求出周期,进而可以求出的值,再把最低点的坐标代入函数解析式中,最后求出的值.【详解】通过函数的图象可知,点B、C的中点为,与它隔一个零点是,设函数的最小正周期为,则,而,把代入函数解析式中,得.故答案为:;三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)应选模型为,理由见解析;(2)【解析】(1)根据增长速度可知应选,根据已知数据可构造方程组求得,进而得到函数模型;(2)根据函数模型可直接构造不等式,结合参考数据计算可得,由此可得结论.小问1详解】的增长速度越来越快,的增长速度越来越慢,应选模型为;则,解得:,,又,函数模型为;【小问2详解】由题意得:,即,,,,至少经过培养基中菌落面积能超过.17、(1)2;(2)单调递增,证明见解析;(3).【解析】(1)利用奇函数定义直接计算作答.(2)求出a值,再利用函数单调性定义证明作答.(3)把给定不等式等价变形,再利用函数单调性求出最小值,列式计算作答.【小问1详解】因是定义域为的奇函数,则,而,解得,所以的值是2.【小问2详解】由(1)得,是定义域为的奇函数,而,则,即,又,解得,则函数在上单调递增,,,,因,则,,于是得,即,所以函数在定义域上单调递增.【小问3详解】当时,,,,而函数在上单调递增,,于是得,令,函数在上单调递减,当,即时,,因此,,解得,所以的范围是.【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.18、(1)f(x)为奇函数,理由见解析(2)证明见解析(3)[-,-2]【解析】(1)根据奇偶性的定义判断;(2)由单调性的定义证明;(3)由单调性得值域【小问1详解】f(x)为奇函数由于f(x)的定义域为,关于原点对称,且,所以f(x)为在上的奇函数(画图正确,由图得出正确结论,也可以得分)【小问2详解】证明:设任意,,有由,得,,即,所以函数f(x)在(1,+∞)上单调递增【小问3详解】由(1),(2)得函数f(x)在[-2,-1]上单调递增,故f(x)的最大值为,最小值为,所以f(x)在[-2,-1]的值域为[-,-2]19、(1)(2)偶函数(3)【解析】(1)根据定义域的要求解出定义域即可;(2)奇偶性的证明首先定义域对称,再求解,得,所以为偶函数;(3)按照对数计算公式求解试题解析:(1)由得所以函数的域为(2)因为函数的域为又所以函数为偶函数(3)20、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解析】(1)五点法作图;(2)整体代入求对称轴,对称中心,单调递增区间.【小问1详解】列表:0010-10020-20描点画图:【小问2详解】求对称轴:,故函数的对称轴为求对称中心:,故函数的对称中心为求单调递增区间:,故函数的单调递增区间为:21、(1)奇函数(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度办公场地租赁合同标准版3篇
- 2025年度美发店教育培训股份入股合同
- 课题申报参考:明代八景图画史料的搜集研究
- 课题申报参考:面向资源受限场景的语音情绪状态学习研究
- 课题申报参考:面向复杂网络环境的AIGC内容标识机制研究
- 2025年度个人网络虚拟商品购买合同示范文本3篇
- 二零二五年度美容美发行业美容仪器研发与销售合同2篇
- 2025年度个人私有房屋购买合同(精装修房屋智能安防系统版)4篇
- 二零二五版美容院养生项目开发与推广合同4篇
- 2025年度个人与公司间商业借款合同标准版4篇
- 诊所负责人免责合同范本
- 2024患者十大安全目标
- 印度与阿拉伯的数学
- 会阴切开伤口裂开的护理查房
- 《钢铁是怎样炼成的》选择题100题(含答案)
- 实验报告·测定鸡蛋壳中碳酸钙的质量分数
- 部编版小学语文五年级下册集体备课教材分析主讲
- 电气设备建筑安装施工图集
- 《工程结构抗震设计》课件 第10章-地下建筑抗震设计
- 公司法务部工作细则(草案)
- 第18课《文言文二则 铁杵成针》(学习任务单)- 四年级语文下册部编版
评论
0/150
提交评论