贵州省遵义市汇川区航天高级中学2024届高一数学第一学期期末复习检测试题含解析_第1页
贵州省遵义市汇川区航天高级中学2024届高一数学第一学期期末复习检测试题含解析_第2页
贵州省遵义市汇川区航天高级中学2024届高一数学第一学期期末复习检测试题含解析_第3页
贵州省遵义市汇川区航天高级中学2024届高一数学第一学期期末复习检测试题含解析_第4页
贵州省遵义市汇川区航天高级中学2024届高一数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义市汇川区航天高级中学2024届高一数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设函数(),,则方程在区间上的解的个数是A. B.C. D.2.设函数与的图像的交点为,则所在的区间是()A. B.C. D.3.数列的前项的和为()A. B.C. D.4.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.5.已知向量,,且,若,均为正数,则的最大值是A. B.C. D.6.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.7.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线后人称之为三角形的欧拉线.已知的顶点,若其欧拉线方程为,则顶点C的坐标是A. B.C. D.8.已知x,y满足,求的最小值为()A.2 B.C.8 D.9.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.10.设全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,611.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.12.下列命题中,其中不正确个数是①已知幂函数的图象经过点,则②函数在区间上有零点,则实数的取值范围是③已知平面平面,平面平面,,则平面④过所在平面外一点,作,垂足为,连接、、,若有,则点是的内心A.1 B.2C.3 D.4二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的定义域是______________.14.若扇形的周长是16,圆心角是2(rad),则扇形的面积是__________.15.已知函数为奇函数,则______16.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图,四面体中,平面,,,,.(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?(Ⅱ)证明:在线段上存在点,使得,并求的值18.设函数()在处取最大值(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边.已知,,,求的值19.已知函数,其中m为常数,且(1)求m的值;(2)用定义法证明在R上是减函数20.已知奇函数.(1)求值;(2)若函数的零点是大于的实数,试求的范围.21.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分条件,求实数的取值范围.22.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由题意得,方程在区间上的解的个数即函数与函数的图像在区间上的交点个数在同一坐标系内画出两个函数图像,注意当时,恒成立,易得交点个数为.选A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.但在应用图象解题时要注意两个函数图象在同一坐标系内的相对位置,要做到观察仔细,避免出错2、B【解析】根据零点所在区间的端点值的乘积小于零可得答案.【详解】函数与的图象的交点为,可得设,则是的零点,由,,∴,∴所在的区间是(1,2).故选:B.3、C【解析】根据分组求和可得结果.【详解】,故选:C4、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B5、C【解析】利用向量共线定理可得2x+3y=5,再利用基本不等式即可得出【详解】∵,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥2,∴xy≤,当且仅当3y=2x时取等号故选C.点睛】本题考查了向量共线定理和基本不等式,属于中档题6、C【解析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.7、A【解析】设C的坐标,由重心坐标公式求重心,代入欧拉线得方程,求出AB的垂直平分线,联立欧拉线方程得三角形外心,外心到三角形两顶点距离相等可得另一方程,两方程联立求得C点的坐标.【详解】设C(m,n),由重心坐标公式得重心为,代入欧拉线方程得:①AB的中点为,,所以AB的中垂线方程为联立,解得所以三角形ABC的外心为,则,化简得:②联立①②得:或,当时,BC重合,舍去,所以顶点C的坐标是故选A.【点睛】本题主要考查了直线方程的各种形式,重心坐标公式,属于中档题.8、C【解析】利用两点间的距离公式结合点到直线的距离公式即可求解.【详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.9、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质10、B【解析】由补集的定义分析可得∁U【详解】根据题意,全集U=1,2,3,4,5,6,7,8,9,而A=则∁U故选:B11、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B12、B【解析】①②因为函数在区间上有零点,所以或,即③平面平面,平面平面,,在平面内取一点P作PA垂直于平面与平面的交线,作PB垂直于平面,则所以平面④因为,且,所以,即是的外心所以正确命题为①③,选B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据表达式有意义列条件,再求解条件得定义域.【详解】由题知,,整理得解得.所以函数定义域是.故答案为:.14、16【解析】因为函数的周长为16,圆心角是2,设扇形的半径为,则,解得r=4,所以扇形的弧长为8,所以面积为,故答案为16.15、##【解析】利用奇函数的性质进行求解即可.【详解】因为是奇函数,所以有,故答案:16、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(Ⅰ);(Ⅱ)证明见解析.【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意得,根据在处取最大值得,即,故.(Ⅱ)由(Ⅰ)可得,故,所以,由正弦定理得,所以,故可得试题解析:(Ⅰ),因为在时取最大值,所以,故又,所以(Ⅱ)由(Ⅰ)知因为,所以,又为的内角,所以由正弦定理得,由题意得为锐角,所以.所以19、(1)1;(2)证明见解析.【解析】(1)将代入函数解析式直接计算即可;(2)利用定义法直接证明函数的单调性即可.【小问1详解】由题意得,,解得;【小问2详解】由(1)知,,所以R,R,且,则,因为,所以,所以,故,即,所以函数在R上是减函数.20、(1)(2)【解析】(1)由奇函数的定义可得,即,化简即可得答案;(2)原问题等价于,从而有函数的值域即为的范围.小问1详解】解:因函数为奇函数,所以,即,所以,因为在上单调递增,所以,即,解得;【小问2详解】解:,由题意,,即,因为,所以,所以,又在上单调递增,所以,所以的范围为.21、(1)(2)【解析】(1)求出集合,利用补集和交集的定义可求得;(2)分析可知且,可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:当时,,则或,,因此,.【小问2详解】解:因为“”是“”必要不充分条件,于是得且,所以,,解得.所以实数的取值范围是.22、(1)见解析;(2)见解析【解析】分析:(1)可根据为等腰三角形得到,再根据平面平面可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论