立体几何外接球及内切球问题_第1页
立体几何外接球及内切球问题_第2页
立体几何外接球及内切球问题_第3页
立体几何外接球及内切球问题_第4页
立体几何外接球及内切球问题_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

13/13立体几何外接球及内切球问题一、球与柱体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1球与正方体如图1所示,正方体,设正方体的棱长为,为棱的中点,为球的球心。常见组合方式有三类:一是球为正方体的内切球,截面图为正方形和其内切圆,则;二是与正方体各棱相切的球,截面图为正方形和其外接圆,则;三是球为正方体的外接球,截面图为长方形和其外接圆,则.例1:棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为()A. B. C. D.1.2球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为其体对角线为.当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A.eq\f(10π,3) B.4π C.eq\f(8π,3) D.eq\f(7π,3)1.3球与正棱柱:①结论:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.②球与一般的正棱柱的组合体,常以外接形态居多.本类题目的解法:构造直角三角形法:设正三棱柱的高为,底面边长为;如图2所示,和分别为上下底面的中心。根据几何体的特点,球心必落在高的中点,,借助直角三角形的勾股定理,可求。(注:底面三角形不是特殊三角形时:可利用正弦定理得到三角形外接圆半径)例3:正四棱柱的各顶点都在半径为的球面上,则正四棱柱的侧面积有最大值为______________.2.球与锥体2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长关系.如图4,设正四面体的棱长为,内切球半径为,外接球的半径为,取的中点为,为在底面的射影,连接为正四面体的高。在截面三角形,作一个与边和相切,圆心在高上的圆,即为内切球的截面。因为正四面体本身的对称性可知,外接球和内切球的球心同为;此时,则有解得:这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4:将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()A. B.2+ C.4+ D.结论:球的外切正四面体,这个小球球心与外切正四面体的中心重合,而正四面体的中心到顶点的距离是中心到地面距离的3倍.2.2球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱柱补形成正方体或者长方体.常见两种形式:一、三棱锥的三条棱互相垂直且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心。如图5,三棱锥的外接球的球心和正方体的外接球的球心重合,设,则。二、如果三棱锥的三条侧棱互相垂直且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心,(为长方体的体对角线长)。例5:在正三棱锥中,分别是棱的中点,且,若侧棱,则正三棱锥外接球的表面积是。补形法:出现“墙角”结构利用构造法(补形法),联系长方体。【原理】:长方体中从一个顶点出发的三条棱长分别为,则体对角线长为,即补形法总结:类型1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角的三棱锥,都可构造正方体。类型2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,都可构造长方体或正方体。类型3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体。类型4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体。例1、若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是______________.解:据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为,则有.∴.故其外接球的表面积.②出现正四面体外接球时利用构造法(补形法),联系正方体例2.(全国卷)一个四面体的所有棱长都为

,四个顶点在同一球面上,则此球的表面积为(

)解析:由于所有棱长都相等,所以构造一个正方体,再寻找棱长相等的四面体,如图2,四面体满足条件,即,由此可求得正方体的棱长为1,体对角线为,从而外接球的直径也为,所以此球的表面积便可求得,故选A.2.3球与正棱锥:正棱锥的内切球和外接球球心都在高线上,但不重合;球与正棱锥的组合,常见的有两类,一:球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二:球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径.这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6:在三棱锥P-ABC中,PA=PB=PC=,侧棱PA与底面ABC所成的角为60°,则该三棱锥外接球的体积为()A.B.C.4D.2.4球与特殊的棱锥(1)若棱锥的顶点可构成共斜边的直角三角形,则共斜边的中点就是其外接球的球心。如图8,三棱锥,满足面,,取的中点为,由直角三角形的性质可得:,所以点为三棱锥的外接球的球心,则.例7:矩形中,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A.B.C.D.(2)测棱相等的锥体顶点的投影在底面外接圆心例7、.若三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则该三棱锥的外接球的球心到平面ABC的距离为()A.B.C.1D.答案:D.,即.

3:球与球对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例8在半径为的球内放入大小相等的4个小球,则小球的半径的最大值为()4:球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论