版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省剑河民族中学2023年数学高一上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.“”是“幂函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下列结论中正确的是A.若角的终边过点,则B.若是第二象限角,则为第二象限或第四象限角C.若,则D.对任意,恒成立3.在中,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.已知点是角终边上一点,则()A. B.C. D.5.已知角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,则()A. B.C. D.6.定义在上的奇函数满足,若,,则()A. B.0C.1 D.27.函数的定义域是()A. B.C. D.8.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.9.函数(且)的图象一定经过的点是()A. B.C. D.10.如果,那么下列不等式中,一定成立的是()A. B.C. D.11.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),与死亡年数之间的函数关系式为(其中为常数),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.若2021年某遗址文物出土时碳14的残余量约占原始含量的,则可推断该文物属于()参考数据:参考时间轴:A.宋 B.唐C.汉 D.战国12.已知,则三者的大小关系是A. B.C. D.二、填空题(本大题共4小题,共20分)13.命题“”的否定是__________14.若,,则=______;_______15.设函数不等于0,若,则________.16.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______三、解答题(本大题共6小题,共70分)17.已知曲线:.(1)当为何值时,曲线表示圆;(2)若曲线与直线交于、两点,且(为坐标原点),求的值.18.如图,在棱长为2的正方体中,E,F分别是棱的中点.(1)证明:平面;(2)求三棱锥的体积.19.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.20.已知:,.设函数求:(1)的最小正周期;(2)的对称中心,(3)若,且,求21.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为,宽为(1)若生态种植园面积为,则为何值时,可使所用篱笆总长最小?22.如图,四面体中,平面,,,,.(Ⅰ)求四面体的四个面的面积中,最大的面积是多少?(Ⅱ)证明:在线段上存在点,使得,并求的值
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据函数的奇偶性的定义和幂函数的概念,结合充分条件、必要条件的判定方法,即可求解.详解】由,即,解得或,当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数;当时,,此时函数的定义域为关于原点对称,且,所以函数为偶函数,所以充分性成立;反之:幂函数,则满足,解得或或,当时,,此时函数为偶函数;当时,,此时函数为偶函数,当时,,此时函数为奇函数函数,综上可得,实数或,即必要性成立,所以“”是“幂函数为偶函数”的充要条件.故选:C.2、D【解析】对于A,当时,,故A错;对于B,取,它是第二象限角,为第三象限角,故B错;对于C,因且,故,所以,故C错;对于D,因为,所以,所以,故D对,综上,选D点睛:对于锐角,恒有成立3、D【解析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解.【详解】因为,由可得:,即,所以,所以,所以或,因为,,所以或,所以的形状为等腰三角形或直角三角形,故选:D.4、D【解析】利用任意角的三角函数的定义可求得的值,进而可得答案.【详解】因为点是角终边上一点,所以,所以.故选:D.5、D【解析】根据任意角的三角函数的定义即可求出的值,根据二倍角的正弦公式,即可求出的值【详解】由题意,角的顶点在坐标原点,始边在轴非负半轴上,且角的终边上一点,所以,,所以故选:D6、C【解析】首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.7、A【解析】利用对数函数的真数大于零,即可求解.【详解】由函数,则,解得,所以函数的定义域为.故选:A【点睛】本题考查了对数型复合函数的定义域,需熟记对数的真数大于零,属于基础题.8、A【解析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.9、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.10、D【解析】取,利用不等式性质可判断ABC选项;利用不等式的性质可判断D选项.【详解】若,则,所以,,,ABC均错;因为,则,因为,则,即.故选:D.11、D【解析】根据给定条件可得函数关系,取即可计算得解.【详解】依题意,当时,,而与死亡年数之间的函数关系式为,则有,解得,于是得,当时,,于是得:,解得,由得,对应朝代为战国,所以可推断该文物属于战国.故选:D12、A【解析】因为<,所以,选A.二、填空题(本大题共4小题,共20分)13、【解析】特称命题的否定.【详解】命题“”的否定是【点睛】本题考查特称命题的否定,属于基础题;对于含有量词的命题的否定要注意两点:一是要改换量词,即把全称(特称)量词改为特称(全称)量词,二是注意要把命题进行否定.14、①.②.【解析】首先指对互化,求,再求;第二问利用指数运算,对数,化简求值.【详解】,,所以;,,所以故答案为:;15、【解析】令,易证为奇函数,根据,可得,再根据,由此即可求出结果.【详解】函数的定义域为,令,则,即,所以为奇函数;又,所以,所以.故答案为:.16、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)由圆的一般方程所满足的条件列出不等式,解之即可;(2)将转化为,即,然后直线与圆联立,结合韦达定理列出关于的方程,解方程即可.【详解】(1)由,得.(2)设,,由得,即.将直线方程与曲线:联立并消去得,由韦达定理得①,②,又由得;∴.将①、②代入得,满足判别式大于0.18、(1)证明见解析(2)【解析】(1)连接,设,连接EF,EO,利用中位线和正方体的性质证明四边形是平行四边形,进而可证平面;(2)由平面可得点F,到平面的距离相等,则,进而求得三棱锥的体积即可【详解】(1)证明:连接,设,连接EF,EO,因为E,F分别是棱的中点,所以,,因为正方体,所以,,所以,,所以四边形是平行四边形,所以,又平面,平面,所以平面(2)由(1)可得点F,到平面的距离相等,所以,又三棱锥的高为棱长,即,,所以.所以【点睛】本题考查线面平行的证明,考查三棱锥的体积,考查转化思想19、(1);(2)(i);(ii)或.【解析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【点睛】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.20、(1);(2)(k∈Z);(3)或.【解析】(1)解:由题意,,(1)函数的最小正周期为;(2),得,所以对称中心;(3)由题意,,得或,所以或点睛:本题考查三角函数的恒等关系的综合应用.本题中,由向量的数量积,同时利用三角函数化简的基本方法,得到,利用三角函数的性质,求出周期、对称中心等21、(1)为,为;(2).【解析】(1)根据题意,可得,篱笆总长为,利用基本不等式可求出的最小值,即可得出对应的值;(2)由题可知,再利用整体乘“1”法和基本不等式,求得,进而得出的最小值.【小问1详解】解:由已知可得,而篱笆总长为,又,则,当且仅当,即时等号成立,菜园的长为,宽为时,可使所用篱笆总长最小【小问2详解】解:由已知得,,又,,当且仅当,即时等号成立,的最小值是22、(Ⅰ);(Ⅱ)证明见解析.【解析】(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 21477-2024船舶与海上技术非金属软管组件和非金属补偿器的耐火性能试验方法
- 《数字电子技术基础》课程教学大纲
- 2024年低价物高价抵押合同范本
- 2024年出售叠加别墅合同范本
- 2024年承接土方垫资合同范本
- 浙江省宁波市镇海区部分学校2024-2025学年二年级上册语文期中试卷(含答案)
- 医药代表培训
- 培训拼音教学的课件
- 乡镇四所环保监察培训
- 卫生院秋季传染病培训
- 三年级数学上册苏教版《认识几分之一》学习单(校际公开课)
- 《调皮的小闹钟》 课件
- CISG联合国国际货物销售合同公约中英文对照复习过程
- 中国八大菜系对外汉语课课件
- 《基础生态学》名词解释——第三版牛翠娟
- 电池厂二级安全培训教程V1.0(1)
- 清净室(Clean Room)管理资料
- (精心整理)特殊疑问句总结及练习
- 经肛门微创手术(TME)(课堂PPT)
- 水泵保养规范执行标准
- 污水处理厂施工的各关键点难点处理措施
评论
0/150
提交评论