不等关系与不等式 市赛获奖_第1页
不等关系与不等式 市赛获奖_第2页
不等关系与不等式 市赛获奖_第3页
不等关系与不等式 市赛获奖_第4页
不等关系与不等式 市赛获奖_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1不等关系与不等式现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.这种不等关系都可用不等式来表示.第三章不等式一、不等关系是普遍存在的想一想,举出几个现实生活中与不等关系有关的例子?不等式用不等号(<、>、≤、≥、≠)表示不等关系的式子叫不等式。二、用不等式(组)来表示不等关系问题1

今天的天气预报说:明天早晨最低温度为9℃,明天白天的最高温度为16℃,那么明天白天的温度t℃满足什么关系?答案:9≤t≤16问题2

某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元销售量就可能相应减少2000本。若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?问题3

某钢铁厂要把长度为4000mm的钢管截成500mm和600mm的两种规格。按照生产的要求,600mm的钢管的数量不能超过500mm钢管的3倍。怎样写出满足上述所有不等关系的不等式呢?分析:设截得500mm的钢管x根,截得600mm的钢管y根三、不等式基本原理a-b>0<=>a>ba-b=0<=>a=ba-b<0<=>a<b比较两个实数a与b的大小,归结为判断它们的差a-b的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.不等式的基本性质(同向不等式的可乘性)(可乘方性、可开方性)典型例题典型例题典型例题五、小结:1.不等关系是普遍存在的2.用不等式(组)来表示不等关系3.不等式基本原理

a-b>0<=>a>ba-b=0<=>a=ba-b<0<=>a<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论