广东惠州市2023年高一上数学期末学业水平测试试题含解析_第1页
广东惠州市2023年高一上数学期末学业水平测试试题含解析_第2页
广东惠州市2023年高一上数学期末学业水平测试试题含解析_第3页
广东惠州市2023年高一上数学期末学业水平测试试题含解析_第4页
广东惠州市2023年高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东惠州市2023年高一上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.下列函数中,既是偶函数又在区间上单调递减的是A. B.C. D.2.下列说法正确的有()①两个面平行且相似,其余各面都是梯形的多面体是棱台;②经过球面上不同的两点只能作一个大圆;③各侧面都是正方形的四棱柱一定是正方体;④圆锥的轴截面是等腰三角形.A.1个 B.2个C.3个 D.4个3.函数的单调递减区间为A. B.C. D.4.设非零向量、、满足,,则向量、的夹角()A. B.C. D.5.已知的三个顶点、、及平面内一点满足,则点与的关系是()A.在的内部 B.在的外部C.是边上的一个三等分点 D.是边上的一个三等分点6.下列各组函数是同一函数的是()①与②与③与④与A.②④ B.③④C.②③ D.①④7.设,,,则的大小关系为A. B.C. D.8.函数的图像可能是().A. B.C. D.9..已知集合,集合,则()A. B.C. D.10.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)11.已知实数x,y满足,那么的最大值为()A. B.C.1 D.212.已知函数,若函数有4个零点,则的取值范围为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的部分图象如图所示.则函数的解析式为______14.已知函数(且)过定点P,且P点在幂函数的图象上,则的值为_________15.函数的值域为,则实数a的取值范围是______16.已知,,且,若不等式恒成立,则实数m的取值范围为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集.18.已知函数是定义在上的偶函数,函数.(1)求实数的值;(2)若时,函数的最小值为.求实数的值.19.已知函数(其中为常数)的图象经过两点.(1)判断并证明函数的奇偶性;(2)证明函数在区间上单调递增.20.已知函数,(1)当时,求的最值;(2)若在区间上是单调函数,求实数a取值范围21.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积22.已知函数(1)若的定义域为,求实数的值;(2)若的定义域为,求实数的取值范围

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】因为函数是奇函数,所以选项A不正确;因为函为函数既不是奇函数,也不是偶函数,所以选项B不正确;函数图象抛物线开口向下,对称轴是轴,所以此函数是偶函数,且在区间上单调递减,所以,选项C正确;函数虽然是偶函数,但是此函数在区间上是增函数,所以选项D不正确;故选C考点:1、函数的单调性与奇偶性;2、指数函数与对数函数;3函数的图象2、A【解析】根据棱台、球、正方体、圆锥的几何性质,分析判断,即可得答案.【详解】①中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱延长线会交于一点,所以①不正确;②中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以②不正确;③中底面不一定是正方形,所以③不正确;④中圆锥的母线长相等,所以轴截面是等腰三角形,所以④是正确的.故选:A3、C【解析】由幂函数的性质知,函数的图像以原点为对称中心,在均是减函数故答案为C4、B【解析】根据已知条件,应用向量数量积的运算律可得,由得,即可求出向量、的夹角.【详解】由题意,,即,∵,∴,则,又,∴.故选:B5、D【解析】利用向量的运算法则将等式变形,得到,据三点共线的充要条件得出结论【详解】解:,,∴是边上的一个三等分点故选:D【点睛】本题考查向量的运算法则及三点共线的充要条件,属于基础题6、B【解析】利用函数的三要素:定义域、值域、对应关系相同即可求解.【详解】对于①,与,定义域均为,但对应,两函数的对应关系不同,故①不是同一函数;对于②,的定义域为,的定义域为,故②不是同一函数;对于③,与定义域均为,函数表达式可化简为,故③两函数为同一函数;对于④,根据函数的概念,与,定义域、对应关系、值域均相同,故④为同一函数,故选:B【点睛】本题考查了函数的三要素,函数相同只需函数的三要素:定义域、值域、对应关系相同,属于基础题.7、B【解析】利用指数函数与对数函数的单调性判断出的取值范围,从而可得结果.【详解】,,,,故选B.【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.8、D【解析】∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.9、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.10、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理11、C【解析】根据重要不等式即可求最值,注意等号成立条件.【详解】由,可得,当且仅当或时等号成立.故选:C.12、C【解析】转化为两个函数交点问题分析【详解】即分别画出和的函数图像,则两图像有4个交点所以,即故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.14、9【解析】由指数函数的性质易得函数过定点,再由幂函数过该定点求解析式,进而可求.【详解】由知:函数过定点,若,则,即,∴,故.故答案为:9.15、【解析】分,,三类,根据一次函数和二次函数的性质可解.【详解】当时,,易知此时函数的值域为;当时,二次函数图象开口向下,显然不满足题意;当时,∵函数的值域为,∴,解得或,综上,实数a的取值范围是,故答案为:.16、【解析】由基本不等式求得的最小值,解不等式可得的范围【详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1).(2)见解析;(3)【解析】(1)根据对数函数的定义,列出关于自变量x的不等式组,求出的定义域;(2)由函数奇偶性的定义,判定在定义域上的奇偶性;(3)化简,根据对数函数的单调性以及定义域,求出不等式>1的解集.试题解析:(1)要使函数有意义.则,解得.故所求函数的定义域为(2)由(1)知的定义域为,设,则.且,故为奇函数.(3)因为在定义域内是增函数,因为,所以,解得.所以不等式的解集是18、(1)(2)【解析】(1)根据函数的奇偶性求得的值.(2)结合指数函数、二次函数的性质求得.【小问1详解】的定义域为,为偶函数,所以,.【小问2详解】由(1)得..令,结合二次函数的性质可知:当时,时,最小,即,解得,舍去.当时,时,最小,即,解得(负根舍去).当时,时,最小,即,解得,舍去.综上所述,.19、(1)见解析;(2)见解析.【解析】⑴根据函数奇偶性的定义判断并证明函数的奇偶性;⑵根据函数单调性的定义证明即可;解析:(1)解:∵函数的图象经过两点∴解得∴.判断:函数是奇函数证明:函数的定义域,∵对于任意,,∴函数是奇函数.(2)证明:任取,则∵,∴,∴.∴在区间上单调递增.20、(1),.(2)【解析】(1)利用二次函数的性质求的最值即可.(2)由区间单调性,结合二次函数的性质:只需保证已知区间在对称轴的一侧,即可求a的取值范围【小问1详解】当时,,∴在上单凋递减,在上单调递增,∴,.【小问2详解】,∴要使在上为单调函数,只需或,解得或∴实数a的取值范围为21、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论