版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安市青山中学2023-2024学年高一上数学期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.已知集合A∪B={0,1,2,3,4},B={1,2,4},那么集合A可能是()A.{1,2,3} B.{0,1,4}C.{0,1,3} D.{1,3,4}2.已知集合,a=3.则下列关系式成立的是A.aAB.aAC.{a}AD.{a}∈A3.国家质量监督检验检疫局发布的相关规定指出,饮酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于,小于的驾驶行为;醉酒驾车是指车辆驾驶人员血液中的酒精含量大于或者等于的驾驶行为.一般的,成年人喝一瓶啤酒后,酒精含量在血液中的变化规律的“散点图”如图所示,且图中的函数模型为:,假设某成年人喝一瓶啤酒后至少经过小时才可以驾车,则的值为()(参考数据:,)A.5 B.6C.7 D.84.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图象可能是A. B.C. D.5.已知,方程有三个实根,若,则实数A. B.C. D.6.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.7.若,则的最小值是()A.1 B.2C.3 D.48.命题“”为真命题的一个充分不必要条件是()A. B.C. D.9.已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c10.若,,则等于()A. B.C. D.11.直线和直线的距离是A. B.C. D.12.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.设函数是以4为周期的周期函数,且时,,则__________14.已知,写出一个满足条件的的值:______15.正三棱柱的侧面展开图是边长为6和12的矩形,则该正三棱柱的体积是_____.16.①函数y=sin2x的单调增区间是[],(k∈Z);②函数y=tanx在它的定义域内是增函数;③函数y=|cos2x|的周期是π;④函数y=sin()是偶函数;其中正确的是____________三、解答题(本大题共6小题,共70分)17.已知集合,(1)若,,求;(2)集合A,B能否相等?若能,求出a,b的值;若不能,请说明理由.18.已知函数在一个周期内的图象如图所示.(1)求函数的最小正周期T及的解析式;(2)求函数的对称轴方程及单调递增区间;(3)将的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数的图像,若在上有两个解,求a的取值范围.19.已知为锐角,,(1)求和的值;(2)求和的值20.已知函数.(1)判断的奇偶性并证明;(2)用函数单调性的定义证明在区间上单调递增;(3)若对,不等式恒成立,求实数的取值范围.21.已知cos(−α)=,sin(+β)=−,α(,),β(,).(1)求sin2α的值;(2)求cos(α+β)的值.22.已知函数,.(1)若关于的不等式的解集为,当时,求的最小值;(2)若对任意的、,不等式恒成立,求实数的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据并集的定义可得集合A中一定包含的元素,再对选项进行排除,可得答案.【详解】∵集合A∪B={0,1,2,3,4},B={1,2,4};∴集合A中一定有元素0和3,故可排除A,B,D;故选:C.2、C【解析】集合,,所以{a}A故选C.3、B【解析】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以,根据题意列不等式,解不等式结合即可求解.【详解】由散点图知,该人喝一瓶啤酒后个小时内酒精含量大于或者等于,所以所求,由,即,所以,即,所以,因为,所以最小为,所以至少经过小时才可以驾车,故选:B.4、A【解析】汽车启动加速过程,随时间增加路程增加的越来越快,汉使图像是凹形,然后匀速运动,路程是均匀增加即函数图像是直线,最后减速并停止,其路程仍在增加,只是增加的越来越慢即函数图像是凸形.故选A考点:函数图像的特征5、B【解析】判断f(x)与2的大小,化简方程求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值【详解】由1﹣x2≥0得x2≤1,则﹣1≤x≤1,,当x<0时,由f(x)=2,即﹣2x=2得x2=1﹣x2,即2x2=1,x2,则x,①当﹣1≤x时,有f(x)≥2,原方程可化为f(x)+2f(x)﹣22ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x,由﹣1解得:0≤a≤22②当x≤1时,f(x)<2,原方程可化为42ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x,又0≤a≤22,∴0∴x1,x2,x3=0由x3﹣x2=2(x2﹣x1),得2(),解得a(舍)或a因此,所求实数a故选B【点睛】本题主要考查函数与方程的应用,根据分段函数的表达式结合绝对值的应用,确定三个根x1、x2、x3的值是解决本题的关键.综合性较强,难度较大6、D【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【详解】函数在R上为减函数所以满足解不等式组可得.故选:D【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.7、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C8、D【解析】先确定“”为真命题时的范围,进而找到对应选项.【详解】“”为真命题,可得,因为,故选:D.9、B【解析】利用对数的运算性质求出a、b、c的范围,即可得到正确答案.【详解】因为a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故选:B10、D【解析】根据三角函数的诱导公式即可化简求值.【详解】∵,,,,,.故选:D.11、A【解析】因为直线即,故两条平行直线和的距离故选A12、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D二、填空题(本大题共4小题,共20分)13、##0.5【解析】利用周期和分段函数的性质可得答案.【详解】,.故答案为:.14、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)15、或【解析】分两种情况来找三棱柱的底面积和高,再代入体积计算公式即可【详解】因为正三棱柱的侧面展开图是边长分别为6和12的矩形,所以有以下两种情况,①6是下底面的周长,12是三棱柱的高,此时,下底面的边长为2,面积为,所以正三棱柱的体积为12②12是下底面的周长,6是三棱柱的高,此时,下底面的边长为4,面积为,所以正三棱柱的体积为24,故答案为或【点睛】本题的易错点在于只求一种情况,应该注意考虑问题的全面性.分类讨论是高中数学的常考思想,在运用分类讨论思想做题时,要做到不重不漏16、①④【解析】①由,解得.可得函数单调增区间;②函数在定义域内不具有单调性;③由,即可得出函数的最小正周期;④利用诱导公式可得函数,即可得出奇偶性【详解】解:①由,解得.可知:函数的单调增区间是,,,故①正确;②函数在定义域内不具有单调性,故②不正确;③,因此函数的最小正周期是,故③不正确;④函数是偶函数,故④正确其中正确的是①④故答案为:①④【点睛】本题考查了三角函数的图象与性质,考查了推理能力与计算能力,属于基础题三、解答题(本大题共6小题,共70分)17、(1),或;(2)能,,【解析】(1)代入数据,根据集合的交集和补集运算法则即可求出结论;(2)根据集合相等的概念即可求出答案.详解】解:(1)当,时,,∵,或,∴,或;(2)∵,若,则可变成,∵,则,解得;若,则可变成,而,不可能;综上:,18、(1),;(2)对称轴为:,增区间为:;(3).【解析】(1)根据题意求出A,函数的周期,进而求出,再代入特殊点的坐标求得解析式;(2)结合函数的图象即可求出函数的对称轴,然后结合正弦函数的单调性求出的增区间;(3)根据题意先求出的解析式,进而作出函数的图象,然后通过数形结合求得答案.【小问1详解】由题意A=1,,则,所以,又因为图象过点,所以,而,则,于是.【小问2详解】结合图象可知,函数的对称轴为:,令,即函数增区间为:.【小问3详解】的图象向右平移个单位长度得到:,于是,如图所示:因为在上有两个解,所以.19、(1),(2),【解析】(1)由为锐角,可求出,利用同角之间的关系可求出,由正弦的两角和求.(2)利用同角之间的关系可求出,根据结合余弦的差角公式可得出答案.【小问1详解】因为为锐角,且,所以所以【小问2详解】因为为锐角,所以所以所以20、(1)为奇函数,证明见解析(2)证明见解析(3)【解析】(1)求出函数的定义域,然后验证、之间的关系,即可证得函数为奇函数;(2)任取、,且,作差,因式分解后判断差值的符号,即可证得结论成立;(3)由参变量分离法可得出,令,求出函数在上的最大值,即可得出实数的取值范围.【小问1详解】证明:函数为奇函数,理由如下:函数的定义域为,,所以为奇函数.【小问2详解】证明:任取、,且,则,,,所以,,所以在区间上单调递增.【小问3详解】解:不等式在上恒成立等价于在上恒成立,令,因为,所以,则有在恒成立,令,,则,所以,所以实数的取值范围为.21、(1)(2)【解析】(1)利用可以快速得到sin2α的值;(2)以“组配角”去求cos(α+β)的值简单快捷.【小问1详解】∵,∴,∴,∴【小问2详解】,,,则又,,则故22、(1)(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学品安全与公共卫生管理研究考核试卷
- 服装行业中的供应商关系管理考核试卷
- 印刷电商平台的发展与应用考核试卷
- 焙烤食品制造市场趋势预测分析考核试卷
- 新媒体时代对服饰品牌传播的影响考核试卷
- 疾病预防与控制管理信息系统
- 玻璃纤维增强塑料模具制造技术研究考核试卷
- 广播电视接收设备的环保要求考核试卷
- 焙烤食品市场营销策略分析考核试卷
- 建筑装饰与室内设计的造型设计考核试卷
- 教科(2024秋)版科学三年级上册2.6 我们来做“热气球”教学设计
- 山西省运城市2024-2025学年高二上学期10月月考英语试题
- 4.3《课间》 (教案)-2024-2025学年一年级上册数学北师大版
- 【班主任工作】2024-2025学年秋季安全主题班会教育周记录
- 2024-2030年街舞培训行业市场发展分析及发展趋势前景预测报告
- 橡胶坝工程施工质量验收评定表及填表说明
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- +陕西省渭南市富平县2023-2024学年九年级上学期摸底数学试卷
- 2023年法律职业资格《客观题卷一》真题及答案
- 公司培训工作报告6篇
- 2024中国民航机场建设集团限公司校园招聘304人高频考题难、易错点模拟试题(共500题)附带答案详解
评论
0/150
提交评论