安徽省合肥八中2023-2024学年数学高一上期末经典模拟试题含解析_第1页
安徽省合肥八中2023-2024学年数学高一上期末经典模拟试题含解析_第2页
安徽省合肥八中2023-2024学年数学高一上期末经典模拟试题含解析_第3页
安徽省合肥八中2023-2024学年数学高一上期末经典模拟试题含解析_第4页
安徽省合肥八中2023-2024学年数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥八中2023-2024学年数学高一上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是A.1 B.C. D.2.为了得到函数的图象,可以将函数的图象()A.沿轴向左平移个单位 B.沿轴向右平移个单位C.沿轴向左平移个单位 D.沿轴向右平移个单位3.设,,定义运算“△”和“”如下:,.若正数,,,满足,,则()A.△,△ B.,C.△, D.,△4.下列函数为奇函数的是A. B.C. D.5.在边长为3的菱形中,,,则=()A. B.-1C. D.6.设函数的部分图象如图所示,若,且,则()A. B.C. D.7.若幂函数的图象经过点,则=A. B.C.3 D.98.若两直线与平行,则它们之间的距离为A. B.C. D.9.设全集,集合,,则=()A. B.C. D.10.设,则的大小关系()A. B.C. D.11.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.12.设全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},则A∩(∁UB)=()A. B.C. D.二、填空题(本大题共4小题,共20分)13.命题“,”的否定是___________.14.________15.已知函数对于任意实数x满足.若,则_______________16.已知函数,若在上是增函数,且直线与的图象在上恰有一个交点,则的取值范围是________.三、解答题(本大题共6小题,共70分)17.已知,,计算:(1)(2)18.已知,且是第________象限角.从①一,②二,③三,④四,这四个选项中选择一个你认为恰当的选项填在上面的横线上,并根据你的选择,解答以下问题:(1)求的值;(2)化简求值:.19.已知向量,,函数,且的图像过点.(1)求的值;(2)将的图像向左平移个单位后得到函数的图像,若图像上各点最高点到点的距离的最小值为1,求的单调递增区间.20.已知函数的图象过点,且满足(1)求函数的解析式:(2)求函数在上最小值;(3)若满足,则称为函数的不动点,函数有两个不相等且正的不动点,求t的取值范围21.已知函数.(1)当时,解关于的不等式;(2)请判断函数是否可能有两个零点,并说明理由;(3)设,若对任意的,函数在区间上的最大值与最小值的差不超过1,求实数的取值范围.22.已知.(1)化简;(2)若,求的值.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】根据题意,函数f(x)是定义在R上的偶函数,则=,又由f(x)区间(﹣∞,0)上单调递增,则f(x)在(0,+∞)上递减,则f(32a﹣1)⇔f(32a﹣1)⇔32a﹣1<⇔32a﹣1,则有2a﹣1,解可得a,即的最大值是,故选:D.2、C【解析】利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】,将函数的图象沿轴向左平移个单位,即可得到函数的图象,故选:C【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题3、D【解析】根据所给运算,取特殊值检验即可排除ACB,得到答案.【详解】令满足条件,则,可排除A,C;令满足。则,排除B;故选:D4、D【解析】函数是非奇非偶函数;和是偶函数;是奇函数,故选D考点:函数的奇偶性5、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.6、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C7、B【解析】利用待定系数法求出幂函数y=f(x)的解析式,再计算f(3)的值【详解】设幂函数y=f(x)=xα,其图象经过点,∴2α,解得α,∴f(x),∴f(3)故选B【点睛】本题考查了幂函数的定义与应用问题,是基础题8、D【解析】根据两直线平行求得值,利用平行线间距离公式求解即可【详解】与平行,,即直线为,即故选D【点睛】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,9、B【解析】根据题意和补集的运算可得,利用交集的概念和运算即可得出结果.【详解】由题意知,所以.故选:B10、C【解析】判断与大小关系,即可得到答案.【详解】因为,,,所以.故选:C.【点睛】本题主要考查对数函数、指数函数的性质,关键是与中间量进行比较,然后得三个数的大小关系,属于基础题.11、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题12、D【解析】先求∁UB,然后求A∩(∁UB)【详解】∵(∁UB)={x|x<3或x≥5},∴A∩(∁UB)={x|0<x<3}故选D【点睛】本题主要考查集合的基本运算,比较基础二、填空题(本大题共4小题,共20分)13、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”14、【解析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【详解】.故答案为:.15、3【解析】根据得到周期为2,可得结合可求得答案.【详解】解:∵,所以周期为2的函数,又∵,∴故答案为:316、【解析】由正弦函数的单调性以及图象的分析得出的取值范围.【详解】因为在上是增函数,所以,解得因为直线与的图象在上恰有一个交点,所以,解得,综上.故答案为:三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)先把化为,然后代入可求;(2)先把化为,然后代入可求.【详解】(1);(2).【点睛】本题主要考查齐次式的求值问题,齐次式一般转化为含有正切的式子,结合正切值可求.18、(1)答案不唯一,具体见解析(2)【解析】(1)考虑为第三象限或第四象限角两种情况,根据同角三角函数关系计算得到答案.(2)化简得到原式,代入数据计算得到答案.【详解】(1)因为,所以为第三象限或第四象限角;若选③,;若选④,;(2)原式.【点睛】本题考查了同角三角函数关系,诱导公式化简,意在考查学生的计算能力和转化能力.19、(1);(2).【解析】(1)利用两个向量的数量积公式,两角和的正弦公式化简函数的解析式,再把点代入,求得的值(2)根据函数的图象变换规律求得的解析式,再利用正弦函数的单调性,求得的单调递增区间【详解】(1)已知,过点解得:;(2)左移后得到设的图象上符合题意的最高点为,解得,解得,,,的单调增区间为.【点睛】本题主要考查了三角函数与向量的简单运算知识点,以及函数的图象变换,属于中档题.20、(1);(2);(3).【解析】(1)根据f(x)图像过点,且满足列出关于m和n的方程组即可求解;(2)讨论对称轴与区间的位置关系,即可求二次函数的最小值;(3)由题可知方程x=g(x)有两个正根,根据韦达定理即可求出t范围.【小问1详解】∵的图象过点,∴①又,∴②由①②解,,∴;【小问2详解】,,当,即时,函数在上单调递减,∴;当,即时,函数在上单调递减,在单调递增,∴;当时,函数在上单调递增,∴综上,【小问3详解】设有两个不相等的不动点、,且,,∴,即方程有两个不相等的正实根、∴,解得21、(1)(2)不可能,理由见解析(3)【解析】(1)结合对数函数的定义域,解对数不等式求得不等式的解集.(2)由,求得,,但推出矛盾,由此判断没有两个零点.(3)根据函数在区间上的最大值与最小值的差不超过1列不等式,结合分离常数法来求得的取值范围.【小问1详解】当时,不等式可化为,有,有解得,故不等式,的解集为.【小问2详解】令,有,有,,,,则,若函数有两个零点,记,必有,,且有,此不等式组无解,故函数不可能有两个零点.【小问3详解】当,,时,,函数单调递减,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论