2024届云南省玉第一中高一数学第一学期期末考试模拟试题含解析_第1页
2024届云南省玉第一中高一数学第一学期期末考试模拟试题含解析_第2页
2024届云南省玉第一中高一数学第一学期期末考试模拟试题含解析_第3页
2024届云南省玉第一中高一数学第一学期期末考试模拟试题含解析_第4页
2024届云南省玉第一中高一数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省玉第一中高一数学第一学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.利用二分法求方程的近似解,可以取得一个区间A. B.C. D.2.已知扇形的弧长是,面积是,则扇形的圆心角的弧度数是()A. B.C. D.或3.已知,则下列结论中正确的是()A.的最大值为 B.在区间上单调递增C.的图象关于点对称 D.的最小正周期为4.已知,,则在方向上的投影为()A. B.C. D.5.设函数,若,则A. B.C. D.6.定义在上的奇函数以5为周期,若,则在内,的解的最少个数是A.3 B.4C.5 D.77.若m,n表示两条不同直线,α表示平面,则下列命题中真命题是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.已知函数,则在上的最大值与最小值之和为()A. B.C. D.9.()A. B.C. D.10.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______12.若sinθ=,求的值_______13.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为______14.__________15.已知是定义在上的偶函数,且当时,,则当时,___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.某公司今年年初用万元收购了一个项目,若该公司从第年到第(且)年花在该项目的其他费用(不包括收购费用)为万元,该项目每年运行的总收入为万元(1)试问该项目运行到第几年开始盈利?(2)该项目运行若干年后,公司提出了两种方案:①当盈利总额最大时,以万元的价格卖出;②当年平均盈利最大时,以万元的价格卖出假如要在这两种方案中选择一种,你会选择哪一种?请说明理由17.已知圆经过,两点,且圆心在直线:上.(Ⅰ)求圆的方程;(Ⅱ)若点在直线:上,过点作圆的一条切线,为切点,求切线长的最小值;(Ⅲ)已知点为,若在直线:上存在定点(不同于点),满足对于圆上任意一点,都有为一定值,求所有满足条件点的坐标.18.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程19.已知,.若,求的取值范围.20.已知函数,)函数关于对称.(1)求的解析式;(2)用五点法在下列直角坐标系中画出在上的图象;(3)写出的单调增区间及最小值,并写出取最小值时自变量的取值集合21.如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,E为AD的中点,过A,D,N的平面交PC于点M.求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据零点存在定理判断【详解】设,则函数单调递增由于,,∴在上有零点故选:D.【点睛】本题考查方程解与函数零点问题.掌握零点存在定理是解题关键2、C【解析】根据扇形面积公式,求出扇形的半径,再由弧长公式,即可求出结论.【详解】因为扇形的弧长为4,面积为2,设扇形的半径为,则,解得,则扇形的圆心角的弧度数为.故选:C.【点睛】本题考查扇形面积和弧长公式应用,属于基础题.3、B【解析】利用辅助角公式可得,根据正弦型函数最值、单调性、对称性和最小正周期的求法依次判断各个选项即可.【详解】;对于A,,A错误;对于B,当时,,由正弦函数在上单调递增可知:在上单调递增,B正确;对于C,当时,,则关于成轴对称,C错误;对于D,最小正周期,D错误.故选:B.4、A【解析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【详解】,,在方向上的投影为:.故选:A【点睛】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.5、A【解析】由的函数性质,及对四个选项进行判断【详解】因为,所以函数为偶函数,且在区间上单调递增,在区间上单调递减,又因为,所以,即,故选择A【点睛】本题考查幂函数的单调性和奇偶性,要求熟记几种类型的幂函数性质6、D【解析】由函数的周期为5,可得f(x+5)=f(x),由于f(x)为奇函数,f(3)=0,若x∈(0,10),则可得出f(3)=f(-2)=-f(2)=0,即f(2)=0,∴f(8)=f(3)=0,∴f(7)=f(2)=0.在f(x+5)=f(x)中,令x=-2.5,可得f(2.5)=f(-2.5)=-f(2.5),∴f(2.5)=f(7.5)=0.再根据f(5)=f(0)=0,故在(0,10)上,y=f(x)的零点的个数是2,2.5,3,5,7,7.5,8,共计7个.故选D点睛:本题是函数性质的综合应用,奇偶性周期性的结合,先从周期性入手,利用题目条件中的特殊点得出其它的零点,再结合奇偶性即可得出其它的零点.7、A【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.8、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.9、D【解析】根据诱导公式以及特殊角的三角函数值,即可容易求得结果.【详解】因为.故选:D.10、D【解析】如图为等腰直角三角形旋转而成的旋转体这是两个底面半径为,母线长4的圆锥,故S=2πrl=2π××4=故答案为D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】讨论函数在的单调性即可得解.【详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:12、6【解析】先通过诱导公式对原式进行化简,然后通分,进而通过同角三角函数的平方关系将原式转化为只含的式子,最后得到答案.【详解】原式=+,因为,所以.所以.故答案为:6.13、##0.25【解析】结合相互独立事件的乘法公式直接计算即可.【详解】记师傅加工两个零件都是精品的概率为,则,徒弟加工两个零件都是精品的概率为,则师徒二人各加工两个零件都是精品的概率为,求得,故徒弟加工两个零件都是精品的概率为.故答案为:14、2【解析】考点:对数与指数的运算性质15、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)第年(2)选择方案②,理由见解析【解析】(1)设项目运行到第年盈利为万元,可求得关于的函数关系式,解不等式可得的取值范围,即可得出结论;(2)计算出两种方案获利,结合两种方案的用时可得出结论.【小问1详解】解:设项目运行到第年的盈利为万元,则,由,得,解得,所以该项目运行到第年开始盈利【小问2详解】解:方案①,当时,有最大值即项目运行到第年,盈利最大,且此时公司总盈利为万元,方案②,当且仅当,即时,等号成立即项目运行到第年,年平均盈利最大,且此时公司的总盈利为万元.综上,两种方案获利相等,但方案②时间更短,所以选择方案②17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析】(Ⅰ)根据题意,设出圆的标准方程,代入条件,列方程求解即可;(Ⅱ)由勾股定理得,所以要求的最小值,即求的最小值,而最小时,垂直于直线,据此可得结论;(Ⅲ)设,,列出相应等式化简,再利用点的任意性,列出方程组求解即可.【详解】(Ⅰ)设圆的方程为,根据题意有,解得,所以圆的方程为;(Ⅱ)由勾股定理得,即,所以要求的最小值,即求的最小值,而当垂直于直线时,最小,此时,所以的最小值为;(Ⅲ)设,满足,假设的定值为,则,化简得,因为对于圆上任意一点上式都成立,所以,解得(舍),因此满足条件点的坐标为.【点睛】本题涉及圆与直线的综合应用,利用了数形结合等思想,考查了学生分析解决问题的能力,综合性较强.在答题时要注意:①线外一点到线上一点的距离中,垂线段最短;②解决任意性问题的关键是令含参部分的系数为0,最常见的就是过定点问题.18、(1)(2)【解析】【试题分析】(1)设所求直线方程为:,将点坐标代入,求得的值,即得所求.(2)求得中点坐标和直线交点的坐标,利用点斜式得到所求直线方程.【试题解析】(1)设与:平行的直线方程为:,将代入,得,解得,故所求直线方程是:(2)∵,,∴线段的中点是,设两直线的交点为,联立解得交点,则,故所求直线的方程为:,即19、.【解析】利用对函数数的性质化简,利用一元二次不等式的解法,讨论,,三种情况,分别分析集合,再结合,解得的取值范围【详解】由,得,解得,即,由,得,当时,是空集,不满足,不符合题意,舍去;当时,,不满足,不符合题意,舍去;当时,解得,因为,所以的取值范围是.20、(1),(2)详见解析(3)单调递增区间是,,最小值为,取得最小值的的集合.【解析】(1)根据函数的对称轴,列式,求;(2)利用“五点法”列表,画图;(3)根据三角函数的性质,即可求解.【小问1详解】因为函数关于直线对称,所以,,因为,所以,所以【小问2详解】首先根据“五点法”,列表如下:【小问3详解】令,解得:,,所以函数的单调递增区间是,,最小值为令,得,函数取得最小值的的集合.21、(1)见证明(2)见证明(3)见证明【解析】(1)先证明四边形DENM为平行四边形,利用线面平行的判定定理即可得到证明;(2)先证明AD⊥平面PEB,由AD∥BC可得BC⊥平面PEB;(3)由(2)知BC⊥平面PEB可得PB⊥MN,由已知得PB⊥AN,即可证得PB⊥平面ADMN,利用面面垂直的判定定理即可得到证明.【详解】(1)∵AD∥BC,BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC.又平面ADMN∩平面PBC=MN,∴AD∥MN.又∵AD∥BC,∴MN∥BC又∵N为PB的中点,∴M为PC的中点,∴MN=BC∵E为AD中点,DE=AD=BC=MN,∴DEMN,∴四边形DENM为平行四边形,∴EN∥DM.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论