安徽省江淮十校2024届高一数学第一学期期末达标检测试题含解析_第1页
安徽省江淮十校2024届高一数学第一学期期末达标检测试题含解析_第2页
安徽省江淮十校2024届高一数学第一学期期末达标检测试题含解析_第3页
安徽省江淮十校2024届高一数学第一学期期末达标检测试题含解析_第4页
安徽省江淮十校2024届高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省江淮十校2024届高一数学第一学期期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数(,且)的图象必过定点A. B.C. D.2.已知函数若则的值为().A. B.或4C. D.或43.已知函数是定义在上的奇函数,当时,,则当时,的表达式是()A. B.C. D.4.要得到函数的图像,只需将函数图的图像A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位5.已知,,,则、、的大小关系为()A. B.C. D.6.已知定义在R上偶函数fx满足下列条件:①fx是周期为2的周期函数;②当x∈0,1时,fx=A12 B.1C.-147.设,,,则下列正确的是()A. B.C. D.8.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.49.已知函数则A. B.C. D.10.如果,,那么直线不通过A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.设扇形的周长为,面积为,则扇形的圆心角的弧度数是________12.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.13.函数的定义域为_____________________14.在直角坐标系中,直线的倾斜角________15.若函数是定义在上的奇函数,且满足,当时,,则__________.16.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)18.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程19.已知函数.求函数的值域20.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女,(1)若从甲校和乙校报名的教师中各选1名,求选出的两名教师性别相同的概率(2)若从报名的6名教师中任选2名,求选出的两名教师来自同一学校的概率21.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为函数,且有(且),令,则,,所以函数的图象经过点.故选:C.【点睛】本题主要考查对数函数(且)恒过定点,属于基础题目.2、B【解析】利用分段讨论进行求解.【详解】当时,,(舍);当时,,或(舍);当时,,;综上可得或.故选:B.【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识.3、D【解析】利用函数的奇偶性求在上的表达式.【详解】令,则,故,又是定义在上的奇函数,∴.故选:D.4、D【解析】根据三角函数图像变换的知识,直接选出正确选项.【详解】依题意,故向左平移个单位得到,故选D.【点睛】本小题主要考查三角函数图像变换的知识,属于基础题.5、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.6、B【解析】根据函数的周期为2和函数fx是定义在R上的偶函数,可知flog【详解】因为fx是周期为2所以flog又函数fx定义在R上的偶函数,所以又当x∈0,1时,fx=所以flog23故选:B.7、D【解析】计算得到,,,得到答案.【详解】,,.故.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.8、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D9、A【解析】,.10、A【解析】截距,因此直线不通过第一象限,选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设扇形的半径和弧长分别为,由题设可得,则扇形圆心角所对的弧度数是,应填答案12、【解析】结合正弦函数的性质确定参数值.【详解】由图可知,最小正周期,所以,所以.故答案为:.【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.13、【解析】,区间为.考点:函数的定义域14、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:15、##【解析】由,可得函数是以为一个周期的周期函数,再根据函数的周期性和奇偶性将所求转化为已知区间即可得解.【详解】解:因为,所以函数是以为一个周期的周期函数,所以,又因为函数是定义在上的奇函数,所以,所以.故答案为:.16、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解析】详解】试题分析:本题考查函数模型在实际中的应用以及分段函数最值的求法.(1)根据题意用分段函数并结合待定系数法求出函数的关系式.(2)首先由题意得到的解析式,再根据分段函数最值的求得求得最值即可试题解析:(1)由题意:当时,;当时,设由已知得解得∴综上可得(2)依题意并由(1)可得①当时,为增函数,∴当时,取得最大值,且最大值为1200②当时,,∴当时,取得最大值,且最大值为.所以的最大值为故当车流密度为100辆/千米时,车流量可以达到最大,且最大值为3333辆/小时.18、(1);(2).【解析】(1)依题意可设,,分别代入到直线和中,求出点坐标,即可求出直线的方程;(2)由题意可知,求出,即可求出圆的方程【详解】(1)依题意可设,因为线段被点平分,所以,则,解得,,即,又过点,易得方程为(2)设圆半径为,则,其中为弦心距,,可得,故所求圆的方程为.19、【解析】将化为,分和分别应用均值不等式可得答案.【详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为20、(1)(2)【解析】(1)利用古典概型概率公式可知(2)从报名的6名教师中任选2名,求选出的两名教师来自同一学校的情况为,则21、(1);(2)【解析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论