版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省台州市椒江区第一中学高一上数学期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若函数有3个零点,则实数m的取值范围()A. B.C.(0,1) D.2.“角为第二象限角”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.设是周期为的奇函数,当时,,则A. B.C. D.4.集合的真子集的个数是()A. B.C. D.5.下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则6.若,则()A.“”是“”的充分不必要条件 B.“”是“”的充要条件C.“”是“”的必要不充分条件 D.“”是“”的既不充分也不必要条件7.已知函数,下列结论正确的是()A.函数图像关于对称B.函数在上单调递增C.若,则D.函数的最小值为8.已知集合,,,则()A.{6,8} B.{2,3,6,8}C.{2} D.{2,6,8}9.要得到函数的图象,只需的图象A.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的倍(横坐标不变)C.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)10.已知点,.若过点的直线l与线段相交,则直线的斜率k的取值范围是()A. B.C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是______12.如图,在棱长均相等的正四棱锥最终,为底面正方形的重心,分别为侧棱的中点,有下列结论:①平面;②平面平面;③;④直线与直线所成角的大小为其中正确结论的序号是______.(写出所有正确结论的序号)13.若函数是定义在上的偶函数,当时,.则当时,______,若,则实数的取值范围是_______.14.已知集合,若,则_______.15.函数的最小值为______.16.设函数,若函数在上的最大值为M,最小值为m,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简与计算(1);(2).18.整治人居环境,打造美丽乡村,某村准备将一块由一个半圆和长方形组成的空地进行美化,如图,长方形的边为半圆的直径,O为半圆的圆心,,现要将此空地规划出一个等腰三角形区域(底边)种植观赏树木,其余的区域种植花卉.设.(1)当时,求的长;(2)求三角形区域面积的最大值.19.已知平面向量满足:,|.(1)若,求的值;(2)设向量的夹角为,若存在,使得,求的取值范围.20.已知函数为上奇函数(1)求实数的值;(2)若不等式对任意恒成立,求实数的最小值21.对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”满足函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}(Ⅰ)设f(x)=x2-2,求集合A和B;(Ⅱ)若f(x)=x2-a,且满足∅A=B,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点,作出图象,即可求出实数的取值范围【详解】因为函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点作出函数图象,由图可知,实数的取值范围是故选:C.2、B【解析】利用充分条件和必要条件的定义判断.【详解】当角为第二象限角时,,所以,故充分;当时,或,所以在第二象限或在第三象限,故不必要;故选:B3、A【解析】根据f(x)是奇函数可得f(﹣)=﹣f(),再根据f(x)是周期函数,周期为2,可得f()=f(﹣4)=f(),再代入0≤x≤1时,f(x)=2x(1﹣x),进行求解.【详解】∵设f(x)是周期为2的奇函数,∴f(﹣x)=﹣f(x),∵f(﹣)=﹣f(),∵T=2,∴f()=f(﹣4)=f(),∵当0≤x≤1时,f(x)=2x(1﹣x),∴f()=2×(1﹣)=,∴f(﹣)=﹣f()=﹣f()=﹣,故选A【点睛】此题主要考查周期函数和奇函数的性质及其应用,注意所求值需要利用周期进行调节,此题是一道基础题.4、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.5、A【解析】AD选项,可以用不等式基本性质进行证明;BC选项,可以用举出反例.【详解】,显然均大于等于0,两边平方得:,A正确;当时,满足,但,B错误;若,当时,则,C错误;若,,则,D错误.故选:A6、C【解析】根据推出关系依次判断各个选项即可得到结果.【详解】对于A,,,则“”是“”的必要不充分条件,A错误;对于B,,,则“”是“”的充分不必要条件,B错误;对于C,,,则“”是“”的必要不充分条件,C正确;对于D,,,则“”是“”的充分不必要条件,D错误.故选:C.7、A【解析】本题首先可以去绝对值,将函数变成分段函数,然后根据函数解析式绘出函数图像,最后结合函数图像即可得出答案.【详解】由题意可得:,即可绘出函数图像,如下所示:故对称轴为,A正确;由图像易知,函数在上单调递增,上单调递减,B错误;要使,则,由图象可得或、或,故或或,C错误;当时,函数取最小值,最小值,D错误,故选:A【点睛】本题考查三角函数的相关性质,主要考查三角函数的对称轴、三角函数的单调性以及三角函数的最值,考查分段函数,考查数形结合思想,是难题.8、A【解析】由已知,先有集合和集合求解出,再根据集合求解出即可.【详解】因为,,所以,又因为,所以.故选:A.9、D【解析】先将函数的解析式化为,再利用三角函数图象的变换规律得出正确选项.【详解】,因此,将函数的图象向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变),可得到函数的图象,故选D.【点睛】本题考查三角函数的图象变换,处理这类问题的要注意以下两个问题:(1)左右平移指的是在自变量上变化了多少;(2)变换时两个函数的名称要保持一致.10、D【解析】由已知直线恒过定点,如图若与线段相交,则,∵,,∴,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先利用指数函数的单调性得,再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题12、①②③【解析】连接AC,易得PC∥OM,可判结论①证得平面PCD∥平面OMN,可判结论②正确由勾股数可得PC⊥PA,得到OM⊥PA,可判结论③正确根据线线平行先找到直线PD与直线MN所成的角为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,可判④错误【详解】如图,连接AC,易得PC∥OM,所以PC∥平面OMN,结论①正确同理PD∥ON,所以平面PCD∥平面OMN,结论②正确由于四棱锥的棱长均相等,所以AB2+BC2=PA2+PC2=AC2,所以PC⊥PA,又PC∥OM,所以OM⊥PA,结论③正确由于M,N分别为侧棱PA,PB的中点,所以MN∥AB,又四边形ABCD为正方形,所以AB∥CD,所以直线PD与直线MN所成的角即为直线PD与直线CD所成的角,为∠PDC,知三角形PDC为等边三角形,所以∠PDC=60°,故④错误故答案为①②③【点睛】本题考查线面平行、面面平行,考查线线角,考查学生分析解决问题的能力,属于中档题13、①.②.【解析】根据给定条件利用偶函数的定义即可求出时解析式;再借助函数在单调性即可求解作答.【详解】因函数是定义在上的偶函数,且当时,,则当时,,,所以当时,;依题意,在上单调递增,则,解得,所以实数的取值范围是.故答案为:;14、【解析】根据求得,由此求得.【详解】由于,所以,所以.故答案为:15、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.16、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)5【解析】(1)根据指数的运算性质计算即可;(2)根据对数的运算法则计算即可.【小问1详解】原式=.【小问2详解】原式.18、(1)(2)【解析】(1)利用三角函数表达出的长;(2)用的三角函数表达出三角形区域面积,利用换元法转化为二次函数,求出三角形区域面积的最大值.【小问1详解】设MN与AB相交于点E,则,则,故的长为【小问2详解】过点P作PF⊥MN于点F,则PF=AE=,而MN=ME+EN=,则三角形区域面积为,设,因为,所以,故,而,则,故当时,取得最大值,故三角形区域面积的最大值为19、(1);(2).【解析】(1)用向量数量积运算法则展开;(2)两边同时平方,转化为关于的一元二次方程有解.【详解】(1)若,则,又因为,|,所以,所以;(2)若,则,又因为,,所以即,所以,解得或,所以.【点睛】本题关键:“向量模的关系”转化为“关于的一元二次方程有解”,,再转化为的不等式,属于中档题.20、(1);(2)【解析】(1)由奇函数得到,再由多项式相等可得;(2)由是奇函数和已知得到,再利用是上的单调增函数得到对任意恒成立.利用参数分离得对任意恒成立,再求,上最大值可得答案【详解】(1)因为函数为上的奇函数,所以对任意成立,即对任意成立,所以,所以(2)由得,因为函数为上的奇函数,所以由(1)得,是上的单调增函数,故对任意恒成立所以对任意恒成立因为,令,由,得,即所以的最大值为,故,即的最小值为【点睛】本题考查了函数的性质,不等式恒成立的问题,第二问的关键点是根据函数的为单调递增函数,得到,再利用参数分离后求的最大值,考查了学生分析问题、解决问题的能力.21、(Ⅰ)A={-1,2};B={-,-1,,3}(Ⅱ)[-,]【解析】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;求解x可得集合B.(Ⅱ)理解A=B时,它表示方程x2-a=x与方程(x2-a)2-a=x有相同的实根,根据这个分析得出关于a的方程求出a的值【详解】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;即x4-2x3-6x2+6x+9=0,即(x+1)(x-3)(x2-3)=0,解得x=-1,x=3,x=,x=-,故B={-,-1,,3};(Ⅱ)∵∅A=B,∴x2-a=x有实根,即x2-x-a=0有实根,则△=1+4a≥0,解得a≥-由(x2-a)2-a=x,即x4-2ax2-x+a2-a=0的左边有因式x2-x-a,从而有(x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年北京大学有机化学教案改革实践
- 2024年安防监控技术国际研讨会
- 《接触网施工》课件 4.11.1 肩架安装
- 2024年教育展望:以《壶口瀑布》为例的教学探索
- 2023年有用的经济学资料
- 人教部编版《道德与法治》二年级上册第2课《周末巧安排》精美课件(第2课时)
- 《书愤》传承与创新的2024年教学解读
- 《陆文学自传》课件
- 2024年白公鹅养殖业市场细分与需求预测
- 《认识百分数》课件的教学实践
- 丙纶纤维的纺丝工艺优化
- 八年级上册语文《富贵不能淫》文言文翻译、注释、古汉语知识及赏析
- 外科视角解读-《甲状腺结节和分化型甲状腺癌诊治指南(第二版)》
- 会议纪要的写作概述
- 小学生建筑科普小知识
- 一例“重度子痫前期”患者的个案护理
- 2024年安徽省皖能能源交易有限公司招聘笔试参考题库附带答案详解
- 2024江苏省南京市六校联考高三下学期英语试题及答案
- 辽宁抗日战争的起始地
- (高清版)DZT 0207-2020 矿产地质勘查规范 硅质原料类
- 地铁保洁服务档案管理
评论
0/150
提交评论