版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新疆昌吉回族自治州木垒县中高一数学第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.香农定理是所有通信制式最基本的原理,它可以用香农公式来表示,其中是信道支持的最大速度或者叫信道容量,是信道的带宽(),S是平均信号功率(),是平均噪声功率().已知平均信号功率为,平均噪声功率为,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A. B.C. D.2.已知函数的定义域为,且满足对任意,有,则函数()A. B.C. D.3.在正六棱柱任意两个顶点的连线中与棱AB平行的条数为()A.2 B.3C.4 D.54.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.5.函数(且)的图象一定经过的点是()A. B.C. D.6.已知函数,若对一切,都成立,则实数a的取值范围为()A. B.C. D.7.半径为的半圆卷成一个圆锥,则它的体积是()A. B.C. D.8.已知函数,若,,,则()A. B.C. D.9.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(-∞,-1) B.(-∞,1)C.(-1,0) D.[-1,0)10.已知x>0,y>0,且x+2y=2,则xy()A.有最大值为1 B.有最小值为1C.有最大值为 D.有最小值为二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.设函数,若函数在上的最大值为M,最小值为m,则______12.如图,、、、分别是三棱柱的顶点或所在棱的中点,则表示直线与是异面直线的图形有______.13.已知点在直线上,则的最小值为______14.已知向量,若,则m=____.15.已知,则的值为______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知集合,.(1)若,求;(2)若,求实数的取值范围.17.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围18.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.19.函数的部分图像如图所示(1)求的解析式;(2)已知函数求的值域20.已知函数(1)求函数的最小正周期;(2)求函数的对称轴和对称中心;(3)若,,求的值21.求下列函数的解析式(1)已知是一次函数,且满足,求;(2)若函数,求
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】利用题设条件,计算出原信道容量的表达式,再列出在B不变时用所求平均噪声功率表示的信道容量的表达式,最后列式求解即得.【详解】由题意可得,,则在信道容量未增大时,信道容量为,信道容量增大到原来2倍时,,则,即,解得,故选:A2、C【解析】根据已知不等式可以判断函数的单调性,再结合四个选项进行判断即可.【详解】因为,所以由,构造新函数,因此有,所以函数是增函数.A:,因为,所以不符合增函数的性质,故本选项不符合题意;B:,当时,函数单调递减,故本选项不符合题意;C:,显然符合题意;D:,因为,所以不符合增函数的性质,故本选项不符合题意,故选:C3、D【解析】作出几何体的直观图观察即可.【详解】解:连接CF,C1F1,与棱AB平行的有,共有5条,故选:D.4、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质5、D【解析】由函数解析式知当时无论参数取何值时,图象必过定点即知正确选项.【详解】由函数解析式,知:当时,,即函数必过,故选:D.【点睛】本题考查了指数型函数过定点,根据解析式分析自变量取何值时函数值不随参数变化而变化,此时所得即为函数的定点.6、C【解析】将,成立,转化为,对一切成立,由求解即可.【详解】解:因为函数,若对一切,都成立,所以,对一切成立,令,所以,故选:C【点睛】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.7、C【解析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【详解】设底面半径为r,则,所以.所以圆锥高.所以体积.故选:C.【点睛】本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.8、A【解析】可判断在单调递增,根据单调性即可判断.【详解】当时,单调递增,,,,.故选:A.9、D【解析】当x>0时,f(x)有一个零点,故当x≤0时只有一个实根,变量分离后进行计算可得答案.【详解】当x>0时,f(x)=3x-1有一个零点x=.因此当x≤0时,f(x)=ex+a=0只有一个实根,∴a=-ex(x≤0),函数y=-ex单调递减,则-1≤a<0.故选:D【点睛】本题考查由函数零点个数确定参数的取值,考查指数函数的性质,属于基础题.10、C【解析】利用基本不等式的性质进行求解即可【详解】,,且,(1),当且仅当,即,时,取等号,故的最大值是:,故选:【点睛】本题主要考查基本不等式的应用,注意基本不等式成立的条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.12、②④【解析】图①中,直线,图②中面,图③中,图④中,面【详解】解:根据题意,在①中,且,则四边形是平行四边形,有,不是异面直线;图②中,、、三点共面,但面,因此直线与异面;在③中,、分别是所在棱的中点,所以且,故,必相交,不是异面直线;图④中,、、共面,但面,与异面所以图②④中与异面故答案为:②④.13、2【解析】由点在直线上得上,且表示点与原点的距离∴的最小值为原点到直线的距离,即∴的最小值为2故答案为2点睛:本题考查了数学的化归与转换能力,首先要知道一些式子的几何意义,比如本题表示点和原点的两点间距离,所以本题转化为已知直线上的点到定点的距离的最小值,即定点到直线的距离最小.14、-1【解析】求出的坐标,由向量共线时坐标的关系可列出关于的方程,从而可求出的值.【详解】解:∵,∴,∵,,∴,解得.故答案为:-115、2【解析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【详解】因,则,所以的值为2.故答案为:2三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)根据并集的概念运算可得结果;(2)分类讨论集合是否为空集,根据交集结果列式可得答案.【详解】(1)当时,,所以.(2)因为,(i)当,即时,,符合题意;(ii)当时,,解得或.综上所述,实数的取值范围是.【点睛】易错点点睛:容易漏掉集合为空集的情况.17、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得18、(1)最小正周期为,对称轴方程;(2)单调递减区间为,值域为.【解析】(1)利用倍角公式、辅助角公式化简函数,结合正弦函数的性质计算作答.(2)确定函数的相位范围,再借助正弦函数的性质计算作答.【小问1详解】依题意,,则,由解得:,所以,函数的最小正周期为,对称轴方程为.【小问2详解】由(1)知,因,则,而正弦函数在上单调递减,在上单调递增,由解得,由解得,因此,在上单调递减,在上单调递增,,而,即,所以函数单调递减区间是,值域为.19、(1)(2)【解析】(1)根据图像和“五点法”即可求出三角函数的解析式;(2)根据三角恒等变换可得,结合x的取值范围和正弦函数的性质即可得出结果.小问1详解】由图像可知的最大值是1,所以,当时,,可得,又,所以当时,有最小值,所以,解得,所以;【小问2详解】,由可得所以,所以.20、(1);(2),;(3)【解析】(1)利用三角函数的恒等变换,对函数的表达式进行化简,进而可以求出周期;(2)利用正弦函数对称轴与对称中心的性质,可以求出函数的对称轴和对称中心;(3)利用题中给的关系式可以求出和,然后将展开求值即可【详解】(1).所以函数的最小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年北京大学有机化学教案改革实践
- 2024年安防监控技术国际研讨会
- 《接触网施工》课件 4.11.1 肩架安装
- 2024年教育展望:以《壶口瀑布》为例的教学探索
- 2023年有用的经济学资料
- 人教部编版《道德与法治》二年级上册第2课《周末巧安排》精美课件(第2课时)
- 2024海滨小城渔业资源管理与利用策略
- 《书愤》传承与创新的2024年教学解读
- 《陆文学自传》课件
- 2024年白公鹅养殖业市场细分与需求预测
- 医院全员教育培训管理工作制度规定办法.docx
- 二十四孝故事
- 英语课堂小说《月亮与六便士》(课堂PPT)
- 专项基金投资募集合作框架协议模版
- (完整word版)拼音练习jqx和ü、üe的相拼
- 医疗质量检查分析、总结、反馈5篇
- 桅杆工艺技术及施工要求
- (完整版)六年级下册体育教学计划与教案
- 北京地铁受电弓的维护与故障检修-毕业设计说明书
- 幼儿园教育和家庭教育的有效结合研究
- 集团公司两金管理评价办法
评论
0/150
提交评论