2024届浙江省台州市高一上数学期末学业水平测试模拟试题含解析_第1页
2024届浙江省台州市高一上数学期末学业水平测试模拟试题含解析_第2页
2024届浙江省台州市高一上数学期末学业水平测试模拟试题含解析_第3页
2024届浙江省台州市高一上数学期末学业水平测试模拟试题含解析_第4页
2024届浙江省台州市高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省台州市高一上数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.2.已知函数,则的值是()A. B.C. D.3.若<α<π,化简的结果是()A. B.C. D.4.设函数若任意给定的,都存在唯一的非零实数满足,则正实数的取值范围为()A. B.C. D.5.函数的大致图像如图所示,则它的解析式是A. B.C. D.6.空间直角坐标系中,点关于平面的对称点为点,关于原点的对称点为点,则间的距离为A. B.C. D.7.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆内接四边形是矩形8.如图,是全集,是子集,则阴影部分表示的集合是()A. B.C. D.9.定义运算:,则函数的图像是()A. B.C. D.10.一名篮球运动员在最近6场比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污点,导致这两个数字无法辨认,但统计员记得除掉污点2处的数字不影响整体中位数,且这六个数据的平均数为17,则污点1,2处的数字分别为A.5,7 B.5,6C.4,5 D.5,5二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的零点为1,则实数a的值为______12.若幂函数是偶函数,则___________.13.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______14.为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校男、女生比例为3:2,则全校抽取学生数为________15.在区间上随机取一个实数,则事件发生的概率为_________.16.“”是“”的______条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设条件,条件(1)在条件q中,当时,求实数x的取值范围.(2)若p是q的充分不必要条件,则实数m的取值范围.18.已知定义域为的函数是奇函数(1)求实数,的值;(2)判断的单调性,并用单调性的定义证明;(3)当时,恒成立,求实数的取值范围19.已知函数f(x)=-,若x∈R,f(x)满足f(-x)=-f(x)(1)求实数a的值;(2)判断函数f(x)(x∈R)的单调性,并说明理由;(3)若对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,求k的取值范围20.已知点,,.(1)若,求的值;(2)若,其中为坐标原点,求的值.21.已知函数,(a为常数,且),若(1)求a的值;(2)解不等式

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.2、D【解析】根据题意,直接计算即可得答案.【详解】解:由题知,,.故选:D3、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力4、A【解析】结合函数的图象及值域分析,当时,存在唯一的非零实数满足,然后利用一元二次不等式的性质即可得结论.【详解】解:因为,所以由函数的图象可知其值域为,又时,值域为;时,值域为,所以的值域为时有两个解,令,则,若存在唯一的非零实数满足,则当时,,与一一对应,要使也一一对应,则,,任意,即,因为,所以不等式等价于,即,因,所以,所以,又,所以正实数的取值范围为.故选:A.5、D【解析】由图易知:函数图象关于y轴对称,函数为偶函数,排除A,B;的图象为开口向上的抛物线,显然不适合,故选D点睛:识图常用方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题6、C【解析】分析:求出点关于平面的对称点,关于原点的对称点,直接利用空间中两点间的距离公式,即可求解结果.详解:在空间直角坐标系中,点关于平面的对称点,关于原点的对称点,则间的距离为,故选C.点睛:本题主要考查了空间直角坐标系中点的表示,以及空间中两点间的距离的计算,着重考查了推理与计算能力,属于基础题.7、B【解析】全称命题的否定特称命题,任意改为存在,把结论否定.【详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.8、C【解析】利用阴影部分所属的集合写出阴影部分所表示的集合【详解】解:由图知,阴影部分在集合中,在集合中,但不在集合中,故阴影部分所表示的集合是.故选:C.9、A【解析】先求解析式,再判断即可详解】由题意故选:A【点睛】本题考查函数图像的识别,考查指数函数性质,是基础题10、A【解析】由于除掉处的数字后剩余个数据的中位数为,故污点处的数字为,,则污点处的数字为,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用求得的值.【详解】由已知得,即,解得.故答案为:【点睛】本小题主要考查函数零点问题,属于基础题.12、【解析】根据幂函数的定义得,解得或,再结合偶函数性质得.【详解】解:因为函数是幂函数,所以,解得或,当时,,为奇函数,不满足,舍;当时,,为偶函数,满足条件.所以.故答案为:13、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.14、80【解析】频率分布直方图中,先根据小矩形的面积等于这一组的频率求出四与第五组的频率和,再根据条件求出前三组的频数,再依据频率的和等于1,求出前三组的频率,从而求出抽取的男生数,最后按比例求出全校抽取学生数即可【详解】根据图可知第四与第五组的频率和为(0.0125+0.0375)×5=0.25∵从左到右前三个小组频率之比1:2:3,第二小组频数为12∴前三个小组的频数为36,从而男生有人∵全校男、女生比例为3:2,∴全校抽取学生数为48×=80故答案为80【点睛】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识15、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型16、充分不必要【解析】解方程,即可判断出“”是“”的充分不必要条件关系.【详解】解方程,得或,因此,“”是“”的充分不必要条件.故答案为充分不必要.【点睛】本题考查充分不必要条件的判断,一般转化为集合的包含关系来判断,考查推理能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将代入,整理得,求解一元二次不等式即可;(2)由题可知条件为,是的子集,列不等式组即可求解.【小问1详解】解:当时,条件,即,解得,故的取值范围为:.【小问2详解】解:由题知,条件,条件,即,∵是的充分不必要条件,故是的子集,∴,解得,故实数m的取值范围为.18、(1),(2)在上单调递增,证明见解析(3)的取值范围为.【解析】(1)根据得到,根据计算得到,得到答案.(2)化简得到,,计算,得到是增函数.(3)化简得到,参数分离,求函数的最大值得到答案.【详解】(1)因为在定义域R上是奇函数.所以,即,所以.又由,即,所以,检验知,当,时,原函数是奇函数.(2)在上单调递增.证明:由(1)知,任取,则,因为函数在上是增函数,且,所以,又,所以,即,所以函数R上单调递增.(3)因为是奇函数,从而不等式等价于,因为在上是增函数,由上式推得,即对一切有恒成立,设,令,则有,,所以,所以,即的取值范围为.19、(1)1;(2)见解析;(3)【解析】(1)根据f(-x)=-f(x)代入求得a值;(2)f(x)是定义域R上的单调减函数,利用定义证明即可;(3)根据题意把不等式化为t2-4t>k,求出f(t)=t2-4t的最小值,即可得出k的取值范围【详解】(1)函数f(x)=-,x∈R,且f(-x)=-f(x),∴-=-+,∴a=+=+=1;(2)f(x)=-是定义域R上的单调减函数,证明如下:任取x1、x2∈R,且x1<x2,则f(x1)-f(x2)=(-)-(-)=-=,由(+1)(+1)>0,当x1<x2时,<,∴->0,∴f(x1)>f(x2),∴f(x)是定义域R上的单调减函数;(3)对任意的t∈R,不等式f(t2-4t)+f(-k)<0恒成立,则f(t2-4t)<-f(-k)=f(k),根据f(x)是定义域R上的单调减函数,得t2-4t>k,设g(t)=t2-4t,t∈R,则g(t)=(t-2)2-4≥-4,∴k的取值范围是k<-4【点睛】本题考查了函数的奇偶性与单调性应用问题,也考查了不等式恒成立问题,是中档题20、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论