版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区西城外国语学校2023-2024学年高一数学第一学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的定义域为()A.B.且C.且D.2.已知表示不大于的最大整数,若函数在上仅有一个零点,则实数的取值范围为()A. B.C. D.3.函数的部分图象大致是A. B.C. D.4.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是A. B.C. D.5.平行四边形中,若点满足,,设,则A. B.C. D.6.某组合体的三视图如下,则它的体积是A. B.C. D.7.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.如图,以为直径在正方形内部作半圆,为半圆上与不重合的一动点,下面关于的说法正确的是A.无最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但无最小值D.既无最大值,又无最小值9.已知函数(,,,)的图象(部分)如图所示,则的解析式是A. B.C. D.10.一人打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.两次都不中靶 D.只有一次中靶二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数的图象恒过定点P,P在幂函数的图象上,则___________.12.已知,是相互独立事件,且,,则______13.已知幂函数y=xα的图象过点(4,),则α=__________.14.设点A(2,-3),B(-3,-2),直线过P(1,1)且与线段AB相交,则l的斜率k的取值范围是_____15.在中,,,与的夹角为,则_____三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知角的顶点在坐标原点,始边与x轴非负半轴重合,终边经过点.(1)求的值;(2)求的值.17.设,为两个不共线的向量,若.(1)若与共线,求实数的值;(2)若为互相垂直的单位向量,且,求实数的值.18.定义在D上的函数,如果满足:存在常数,对任意,都有成立,则称是D上的有界函数,其中M称为函数的上界.(1)证明:在上有界函数;(2)若函数在上是以3为上界的有界函数,求实数a的取值范围.19.已知函数的图象时两条相邻对称轴之间的距离为,将的图象向右平移个单位后,所得函数的图象关于y轴对称.(1)求函数的解析式;(2)若,求值.20.已知函数.(1)根据定义证明:函数在上是增函数;(2)根据定义证明:函数是奇函数.21.2015年10月,实施了30多年的独生子女政策正式宣告终结,党的十八届五中全会公报宣布在我国全面放开二胎政策.2021年5月31日,中共中央政治局召开会议,会议指出进一步优化生育政策,实施一对夫妻可以生育三个子女政策及配套支持措施,有利于改善我国人口结构,落实积极应对人口老龄化国家战略,保持我国人力资源禀赋优势.某镇2021年1月,2月,3月新生儿的人数分别为52,61,68,当年4月初我们选择新生儿人数和月份之间的下列两个函数关系式①;②(,,,,都是常数),对2021年新生儿人数进行了预测.(1)请你利用所给的1月,2月,3月份数据,求出这两个函数表达式;(2)结果该地在4月,5月,6月份的新生儿人数是74,78,83,你认为哪个函数模型更符合实际?并说明理由.(参考数据:,,,,)
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C2、C【解析】根据题意写出函数表达式为:,在上仅有一个零点分两种情况,情况一:在第一段上有零点,,此时检验第二段无零点,故满足条件;情况二,第二段有零点,以上两种情况并到一起得到:.故答案为C.点睛:在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.3、B【解析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.4、C【解析】将函数的图象上所有的点向右平行移动个单位长度,所得函数图象的解析式为y=sin(x-);再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是.故选C.5、B【解析】画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案【详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【点睛】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题6、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式7、A【解析】根据充分必要条件的定义判断【详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A8、D【解析】设正方形的边长为2,如图建立平面直角坐标系,则D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故选D.点睛:本题考查了向量的加法及向量模的计算,利用建系的方法,引入三角函数来解决使得思路清晰,计算简便,遇见正方形,圆,等边三角形,直角三角形等特殊图形常用建系的方法.9、C【解析】根据图象可知,利用正弦型函数可求得;根据最大值和最小值可确定,利用及可求得,从而得到函数解析式.【详解】由图象可知,的最小正周期:又又,且,,即,本题正确选项:【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确由最大值和最小值确定;由周期确定;通常通过最值点来进行求解,属于常考题型.10、C【解析】根据互斥事件定义依次判断各个选项即可.【详解】对于A,若恰好中靶一次,则“至少有一次中靶”与“至多有一次中靶”同时发生,不是互斥事件,A错误;对于B,若两次都中靶,则“至少有一次中靶”与“两次都中靶”同时发生,不是互斥事件,B错误;对于C,若两次都不中靶,则“至少有一次中靶”与“两次都不中靶”不能同时发生,是互斥事件,C正确;对于D,若只有一次中靶,则“至少有一次中靶”与“只有一次中靶”同时发生,不是互斥事件,D错误.故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、64【解析】由题意可求得点,求出幂函数的解析式,从而求得.【详解】令,则,故点;设幂函数,则,则;故;故答案为:64.12、【解析】由相互独立事件的性质和定义求解即可【详解】因为,是相互独立事件,所以,也是相互独立事件,因为,,所以,故答案为:13、【解析】把点的坐标代入幂函数解析式中即可求出.【详解】解:由幂函数的图象过点,所以,解得.故答案为:.14、k≥或k≤-4【解析】算出直线PA、PB的斜率,并根据斜率变化的过程中求得斜率的取值范围详解】直线PA的斜率为,同理可得PB的斜率为直线过点且与AB相交直线的斜率取值范围是k≥或k≤-4故答案为k≥或k≤-415、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)8.【解析】(1)根据三角函数的定义即可求得答案;(2)根据三角函数的定义求出,然后用诱导公式将原式化简,进而进行弦化切,最后求出答案.【小问1详解】由题意,,所以.【小问2详解】由题意,,则原式.17、(1)-;(2)2.【解析】(1)若与共线,则存在实数,使得,根据,为两个不共线的向量可列出关于k和λ的方程组,求解方程组即可;(2)若,则,代入,根据向量数量积运算律即可计算.小问1详解】若与共线,则存在实数,使得,即,则且,解得;小问2详解】由题可知,,,若,则,变形可得:,即.18、(1)证明见解析(2)【解析】(1)根据,利用求解单调性求解;(2)根据在上是以3为上界的有界函数,令,则,转化,在时恒成立求解.【小问1详解】解:,则在上是严格增函数,故,即,故,故是有界函数;【小问2详解】因为在上是以3为上界的有界函数,所以在上恒成立,令,则,所以在时恒成立,所以,在时恒成立,函数在上严格递减,所以;函数在上严格递增,所以.所以实数a的取值范围是.19、(1)(2)【解析】(1)根据两条相邻对称轴之间的距离可求得函数的周期,进而求得,根据平移之后函数图象关于轴对称,可得值,从而可得函数解析式;(2)将所求角用已知角来表示即可求得结果【小问1详解】由题意可知,,即,所以,,将的图象向右平移个单位得,因为的图象关于轴对称,所以,,所以,,因为,所以,所以;【小问2详解】,所以,,,所以20、⑴见解析;⑵见解析.【解析】(1)利用单调性定义证明函数的单调性;(2)利用奇偶性定义证明函数奇偶性.试题解析:⑴设任意的,且,则,,即,又,,即,在上是增函数⑵,,,即所以函数是奇函数.点睛:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差:,并将此式变形(要注意变形到能判断整个式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政总厨个人述职报告
- 糖尿病护理方案
- 3.3.1盐类的水解酸碱性高二上学期化学人教版(2019)选择性必修1
- 足跟痛的诊断与治疗
- 保护牙齿小班安全教案反思
- 荷塘月色说课稿
- 安踏企业五年战略规划
- 生物物理学实验室安全操作
- 机场租赁合同
- 健身中心土地租赁协议
- GB/T 42455.2-2024智慧城市建筑及居住区第2部分:智慧社区评价
- 2024年认证行业法律法规及认证基础知识
- 2024广西专业技术人员继续教育公需科目参考答案(97分)
- YYT 0653-2017 血液分析仪行业标准
- 江苏省建筑与装饰工程计价定额(2014)电子表格版
- 刑事受害人授权委托书范本
- 传染病转诊单
- 手术室各级护士岗位任职资格及职责
- 小儿常见眼病的诊治与预防PPT参考课件
- 班组建设实施细则
- 毕业设计(论文)汽车照明系统常见故障诊断与排除
评论
0/150
提交评论