




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市房山区房山实验中学2024届数学高一上期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数,则下列说法正确的是()A.的最小正周期为 B.的图象关于直线C.的一个零点为 D.在区间的最小值为12.已知命题,则是()A., B.,C., D.,3.已知函数的图象,给出以下四个论断①的图象关于直线对称②图象的一个对称中心为③在区间上是减函数④可由向左平移个单位以上四个论断中正确的个数为()A.3 B.2C.1 D.04.如果角的终边经过点,则()A. B.C. D.5.下列函数中,在定义域内既是单调函数,又是奇函数的是()A. B.C. D.6.为参加学校运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是()A. B.C. D.7.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位8.已知,,且,则的最小值为()A.4 B.9C.10 D.129.如图,已知,,共线,且向量,则()A. B.C. D.10.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则()A. B.C. D.11.在下列函数中,最小值为2的是()A.(且) B.C. D.12.若全集,且,则()A.或 B.或C. D.或.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数给出下列四个结论:①存在实数,使函数为奇函数;②对任意实数,函数既无最大值也无最小值;③对任意实数和,函数总存在零点;④对于任意给定的正实数,总存在实数,使函数在区间上单调递减.其中所有正确结论的序号是______________.14.如图,若角的终边与单位圆交于点,则________,________15.某医药研究所研发一种新药,如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y(微克)与时间t(时)之间近似满足如图所示的关系.若每毫升血液中含药量不低于0.5微克时,治疗疾病有效,则服药一次治疗疾病的有效时间为___________小时.16.已知函数f(x)=,设a∈R,若关于x的不等式f(x)在R上恒成立,则a的取值范围是__三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,.(1)求;(2)若角的终边上有一点,求.18.已知.(1)若能表示成一个奇函数和一个偶函数的和,求和的解析式;(2)若和在区间上都是减函数,求的取值范围;(3)在(2)的条件下,比较和的大小.19.假设你有一笔资金用于投资,年后的投资回报总利润为万元,现有两种投资方案的模型供你选择.(1)请在下图中画出的图像;(2)从总利润的角度思考,请你选择投资方案模型.20.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.(1)求证:MN⊥平面A1BC;(2)求直线BC1和平面A1BC所成的角的大小.21.某单位安装1个自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积x(单位:平方米)成正比,比例系数为0.1,为了保证正常用水,安装后采用净水装置净水和自来水公司供水互补的用水模式.假设在此模式下,安装后该单位每年向自来水公司缴纳水费为,记y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和(1)写出y关于x的函数表达式;(2)求x为多少时,y有最小值,并求出y的最小值22.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】根据余弦函数的图象与性质判断其周期、对称轴、零点、最值即可.【详解】函数,周期为,故A错误;函数图像的对称轴为,,,不是对称轴,故B错误;函数的零点为,,,所以不是零点,故C错误;时,,所以,即,所以,故D正确.故选:D2、C【解析】由全称命题的否定是特称命题即可得结果.【详解】由全称命题的否定是特称命题知:,,是,,故选:C.3、B【解析】利用代入检验法可判断①②③的正误,利用图象变换可判断④的正误.【详解】,故的图象关于直线对称,故①正确.,故的图象的对称中心不是,故②错误.,当,,而在为减函数,故在为减函数,故③正确.向左平移个单位后所得图象对应的解析式为,当时,此函数的函数值为,而,故与不是同一函数,故④错误.故选:B.4、D【解析】由三角函数的定义可求得的值.【详解】由三角函数的定义可得.故选:D.【点睛】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.5、A【解析】根据解析式可直接判断出单调性和奇偶性.【详解】对于A:为奇函数且在上单调递增,满足题意;对于B:为非奇非偶函数,不合题意;对于C:为非奇非偶函数,不合题意;对于D:在整个定义域内不具有单调性,不合题意.故选:A.6、C【解析】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的基本事件,甲被选中的基本事件,即可求出甲被选中的概率【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,共有种方法,甲被选中,共有3种方法,甲被选中的概率是故选:C【点睛】本题考查通过组合的应用求基本事件和古典概型求概率,考查学生的计算能力,比较基础7、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题8、B【解析】将展开利用基本不等式即可求解.【详解】由,,且得,当且仅当即,时等号成立,的最小值为,故选:B.9、D【解析】由已知得,再利用向量的线性可得选项.【详解】因为,,,三点共线,所以,所以.故选:D.10、B【解析】由三角函数定义列式,计算,再由所给条件判断得解.【详解】由题意知,故,又,∴.故选:B11、C【解析】根据基本不等式的使用条件,对四个选项分别进行判断,得到答案.【详解】选项A,当时,,所以最小值为不正确;选项B,因为,所以,所以,当且仅当,即时等号成立,而,所以等号不成立,所以不正确;选项C,因为,所以,当且仅当,即时,等号成立,所以正确;选项D,因为,所以,所以,当且仅当,即时,等号成立,而,所以不正确.故选:C.【点睛】本题考查基本不等式求和的最小值,基本不等式的使用条件,属于简单题.12、D【解析】根据集合补集的概念及运算,准确计算,即可求解.【详解】由题意,全集,且,根据集合补集的概念及运算,可得或.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①②③④【解析】分别作出,和的函数的图象,由图象即可判断①②③④的正确性,即可得正确答案.【详解】如上图分别为,和时函数的图象,对于①:当时,,图象如图关于原点对称,所以存在使得函数为奇函数,故①正确;对于②:由三个图知当时,,当时,,所以函数既无最大值也无最小值;故②正确;对于③:如图和图中存在实数使得函数图象与没有交点,此时函数没有零点,所以对任意实数和,函数总存在零点不成立;故③不正确对于④:如图,对于任意给定的正实数,取即可使函数在区间上单调递减,故④正确;故答案为:①②④【点睛】关键点点睛:本题解题关键点是分段函数图象,涉及二次函数的图象,要讨论,和即明确分段区间,作出函数图象,数形结合可研究分段函数的性质.14、①.##0.8②.【解析】根据单位圆中的勾股定理和点所在象限求出,然后根据三角函数的定义求出即可【详解】如图所示,点位于第一象限,则有:,且解得:(其中)故答案为:;15、【解析】根据图象求出函数的解析式,然后由已知构造不等式,解不等式即可得解.【详解】当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有或,解得,所以,所以服药一次治疗疾病有效时间为个小时,故答案为:16、﹣≤a≤2【解析】先求画出函数的图像,然后对的图像进行分类讨论,使得的图像在函数的图像下方,由此求得的取值范围.【详解】画出函数的图像如下图所示,而,是两条射线组成,且零点为.将向左平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.将向右平移,直到和函数图像相切的位置,联立方程消去并化简得,令判别式,解得.根据图像可知【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如函数的图像,是引出的两条射线.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)由条件求得,将所求式展开计算(2)由条件求得与,再由二倍角与两角和的正切公式计算小问1详解】,,则故【小问2详解】角终边上一点,则由(1)可得,18、(1)(2)(3)【解析】(1)根据函数奇偶性的定义可得出关于和的等式组,即可解得函数和的解析式;(2)利用已知条件求得;(3)化简的表达式,令,分析关于的函数在上的单调性,由此可得出与的大小.【小问1详解】由已知可得,,,所以,,,解得.即.【小问2详解】函数在区间上是减函数,则,解得,又由函数在区间上是减函数,得,则且,所以.【小问3详解】由(2),令,因为函数和在上为增函数,故函数在上为增函数,所以,,而,所以,即.19、(1)作图见解析(2)答案不唯一,具体见解析【解析】(1)根据指数函数描出几个特殊点,用平滑的曲线连接即可.(2)结合(1)中的图像,分析可得对于不同的值进行讨论即可求解.【详解】(1)(2)由图可知当时,;当时,当时,;当时,;当时,;所以当资金投资2年或4年时两种方案的回报总利润相同;当资金投资2年以内或4年以上,按照模型回报总利润为最大;当资金投资2年以上到4年以内,按照模型回报总利润最大.【点睛】本题考查了指数函数、二次函数模型的应用,属于基础题.20、(1)见解析;(2)【解析】(1)易得BC⊥平面ACC1A1,连接AC1,则BC⊥AC1.侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,根据线面垂直判定定理可知AC1⊥平面A1BC,因为侧面ABB1A1是正方形,MN是△AB1C1的中位线,所以MN∥AC1,从而MN⊥平面A1BC;(2)根据AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,根据线面所成角的定义可知∠C1BD为直线BC1和平面A1BC所成角,设AC=BC=CC1=a,求出C1D,BC1,在Rt△BDC1中,求出∠C1BD,即可求出所求.试题解析:(1)证明如图,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连接AC1,则BC⊥AC1.又侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连接AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.(2)如图所示,因为AC1⊥平面A1BC,设AC1与A1C相交于点D,连接BD,则∠C1BD为直线BC1和平面A1BC所成的角.设AC=BC=CC1=a,则C1D=a,BC1=a在Rt△BDC1中,sin∠C1BD==,所以∠C1BD=30°,故直线BC1和平面A1BC所成的角为30°21、(1)(2)当时,y有最小值为3.【解析】(1)根据y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和即可建立函数模型;(2)利用均值不等式即可求解.【小问1详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程建筑劳务分包协议范本
- 合同签订的法律依据解析3篇
- 合同条款修改协议3篇
- 关于调解协议书范文集合3篇
- 住宅小区土方供应3篇
- 弱电监控系统建设项目招标3篇
- 空调器个性化定制服务考核试卷
- 木材标准化尺寸与加工适应性考核试卷
- 竹材采运企业社会责任与公益事业考核试卷
- 美容仪器产品的市场潜力评估与分析考核试卷
- 啤酒采购合同协议书模板
- 中医把脉入门培训课件
- 高血糖症的急救与护理
- 成人失禁性皮炎的预防与护理
- 技术信息收集与分析方法考核试卷
- 小学2025年国防教育课程开发计划
- 2025届安徽省示范高中皖北协作区高三下学期一模考试英语试题(原卷版+解析版)
- 防溺水家长测试题及答案
- 义务教育数学课程标准(2024年版)
- 三年级下册面积单位换算练习100道及答案
- 住宅项目开盘前工作倒排表
评论
0/150
提交评论