北京市门头沟区市级名校2024届高一数学第一学期期末学业质量监测试题含解析_第1页
北京市门头沟区市级名校2024届高一数学第一学期期末学业质量监测试题含解析_第2页
北京市门头沟区市级名校2024届高一数学第一学期期末学业质量监测试题含解析_第3页
北京市门头沟区市级名校2024届高一数学第一学期期末学业质量监测试题含解析_第4页
北京市门头沟区市级名校2024届高一数学第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市门头沟区市级名校2024届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.的零点所在区间为()A. B.C. D.2.已知定义在R上的函数的图象是连续不断的,且有如下对应值表:x123453那么函数一定存在零点的区间是()A. B.C. D.3.下列函数中,是奇函数且在其定义域内单调递增的是A. B.C. D.4.若点、、在同一直线上,则()A. B.C. D.5.函数是上的偶函数,则的值是A. B.C. D.6.函数的零点为,,则的值为()A.1 B.2C.3 D.47.下列函数中,值域是的是A. B.C. D.8.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.9.若将函数图象向左平移个单位,则平移后的图象对称轴为()A. B.C. D.10.已知函数的部分图象如图所示,若函数的图象由的图象向右平移个单位长度得到,则()A. B.C. D.11.将函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A. B.C. D.12.已知向量,且,则A. B.C.2 D.-2二、填空题(本大题共4小题,共20分)13.已知关于x的不等式的解集为,则的解集为_________14.已知函数,若,不等式恒成立,则的取值范围是___________.15.设函数,则________.16.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________三、解答题(本大题共6小题,共70分)17.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.18.如图,四边形中,,,,,、分别在、上,,现将四边形沿折起,使平面平面()若,是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由()求三棱锥的体积的最大值,并求此时点到平面的距离19.画出函数f(x)=|log3x|的图像,并求出其值域、单调区间以及在区间上的最大值.20.已知直线l:与x轴交于A点,动圆M与直线l相切,并且和圆O:相外切求动圆圆心M的轨迹C的方程若过原点且倾斜角为的直线与曲线C交于M、N两点,问是否存在以MN为直径的圆过点A?若存在,求出实数m的值;若不存在,说明理由21.已知全集,,集合(1)求;(2)求22.已知函数的图像如图所示.(1)求函数的解析式;(2)当时,求函数的最大值和最小值.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】根据零点存在性定理进行判断即可【详解】,,,,根据零点存在性定理可得,则的零点所在区间为故选C【点睛】本题考查零点存性定理,属于基础题2、B【解析】利用零点存在性定理判断即可.【详解】则函数一定存在零点的区间是故选:B【点睛】本题主要考查了利用零点存在性定理判断零点所在区间,属于基础题.3、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】解:根据题意,依次分析选项:对于A,y=sinx,是正弦函数,在定义域上不是增函数;不符合题意;对于B,y=tanx,为正切函数,在定义域上不是增函数,不符合题意;对于C,y=x3,是奇函数且在其定义域内单调递增,符合题意;对于D,y=ex为指数函数,不是奇函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性4、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.5、C【解析】分析:由奇偶性可得,化为,从而可得结果.详解:∵是上的偶函数,则,即,即成立,∴,又∵,∴.故选C点睛:本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.6、C【解析】根据零点存在性定理即可求解.【详解】是上的增函数,又,函数的零点所在区间为,又,.故选:C.7、D【解析】分别求出各函数的值域,即可得到答案.【详解】选项中可等于零;选项中显然大于1;选项中,,值域不是;选项中,故.故选D.【点睛】本题考查函数的性质以及值域的求法.属基础题.8、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.9、A【解析】由图象平移写出平移后的解析式,再由正弦函数的性质求对称轴方程.【详解】,令,,则且.故选:A.10、A【解析】结合图象利用五点法即可求得函数解析式.【详解】由图象可得解得,因为,所以.又因为,所以因为,所以,,即,.又因为,所以..故选:A.11、A【解析】先根据三角函数图象变换规律写出所得函数的解析式,再求出其对称中心,确定选项【详解】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为令,得,所以函数的对称中心为观察选项只有A符合故选A【点睛】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高12、A【解析】由于两个向量垂直,故有.故选:A二、填空题(本大题共4小题,共20分)13、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.14、【解析】原问题等价于时,恒成立和时,恒成立,从而即可求解.【详解】解:由题意,因为,不等式恒成立,所以时,恒成立,即,所以;时,恒成立,即,令,则,由对勾函数的单调性知在上单调递增,在上单调递减,所以时,,所以;综上,.所以的取值范围是.故答案为:15、6【解析】根据分段函数的定义,分别求出和,计算即可求出结果.【详解】由题知,,,.故答案为:6.【点睛】本题考查了分段函数求函数值的问题,考查了对数的运算.属于基础题.16、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:2三、解答题(本大题共6小题,共70分)17、(1)(2)或.【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可试题解析:(1)∵圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,∴圆的方程为.(2)设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.假如以为直径的圆能过原点,则.∵圆心到直线的距离为,∴.∴,解得.经检验时,直线与圆均相交,∴的方程为或.点睛:直线和圆的方程的应用,直线和圆的位置关系,务必牢记d与r的大小关系对应的位置关系结论的理解.18、(1)答案见解析;(2)答案见解析.【解析】(1)存在,使得平面,此时,即,利用几何关系可知四边形为平行四边形,则,利用线面平行的判断定理可知平面成立(2)由题意可得三棱锥的体积,由均值不等式的结论可知时,三棱锥的体积有最大值,最大值为建立空间直角坐标系,则,平面的法向量为,故点到平面的距离试题解析:()存在,使得平面,此时证明:当,此时,过作,与交,则,又,故,∵,,∴,且,故四边形为平行四边形,∴,∵平面,平面,∴平面成立()∵平面平面,平面,,∴平面,∵,∴,,,故三棱锥的体积,∴时,三棱锥的体积有最大值,最大值为建立如图所示的空间直角坐标系,则,,,,,设平面的法向量为,则,∴,取,则,,∴∴点到平面的距离19、图象见解析,值域为[0,+∞),单调递增区间[1,+∞),单调递减区间是(0,1),最大值为2.【解析】由于f(x)=|log3x|=所以在[1,+∞)上f(x)图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,由此可画出函数的图像,再结合函数的图像可求出函数的值域和单调区间,及最值【详解】因为f(x)=|log3x|=所以在[1,+∞)上f(x)的图像与y=log3x的图像相同,在(0,1)上的图像与y=log3x的图像关于x轴对称,据此可画出其图像,如图所示.由图像可知,函数f(x)的值域为[0,+∞),单调递增区间是[1,+∞),单调递减区间是(0,1).当x∈时,f(x)在区间上是单调递减的,在(1,6]上是单调递增的.又f=2,f(6)=log36<2,故f(x)在区间上的最大值为2.【点睛】此题考查含绝对值对数型函数的图像和性质,考查数形结合的思想,属于基础题20、(1)()(2)存在,【解析】(1)设出动圆圆心坐标,由动圆圆心到切线的距离等于动圆与定圆的圆心距减定圆的半径列式求解动圆圆心的轨迹方程;(2)求出过原点且倾斜角为的直线方程,和曲线C联立后利用根与系数关系得到M,N的横纵坐标的和与积,由,得列式求解m的值,结合m的范围说明不存在以MN为直径的圆过点A试题解析:(1)设动圆圆心为,则,化简得(),这就是动圆圆心的轨迹的方程.(2)直线的方程为,代入曲线的方程得显然.设,,则,,而若以为直径的圆过点,则,∴由此得∴,即.解得(舍去)故存在以为直径的圆过点点睛:本题考查了轨迹方程的求法,考查了直线与圆锥曲线的关系,训练了利用数量积判断两个向量的垂直关系,考查了学生的计算能力.21、(1);(2).【解析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,,集合,故.【小问2详解】集合,故或,故.22、(1);(2)最大值,最小值为-1.【解析】(1)由图可知,,可得,再将点代入得,结合,可得的值,即可求出函数的解析式;(2)根据函数的周期,可求时函数的最大值和最小值就是转化为求函数在区间上的最大值和最小值,结合三角函数图象,即可求出函数的最大值和最小值.试题解析:(1)由图可知:,则∴,将点代入得,,∴,,即,∵∴∴函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论