2024届四川省遂宁市射洪中学高一上数学期末学业质量监测模拟试题含解析_第1页
2024届四川省遂宁市射洪中学高一上数学期末学业质量监测模拟试题含解析_第2页
2024届四川省遂宁市射洪中学高一上数学期末学业质量监测模拟试题含解析_第3页
2024届四川省遂宁市射洪中学高一上数学期末学业质量监测模拟试题含解析_第4页
2024届四川省遂宁市射洪中学高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省遂宁市射洪中学高一上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知实数,,,则,,的大小关系为()A. B.C. D.2.如图正方体,棱长为1,为中点,为线段上的动点,过的平面截该正方体所得的截面记为,则下列命题正确的是当时,为四边形;当时,为等腰梯形;当时,与交点R满足;当时,为六边形;当时,的面积为A. B.C. D.3.已知函数(,且)在上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是A. B.[,]C.[,]{} D.[,){}4.已知的值域为,那么的取值范围是()A. B.C. D.5.已知sinα+cosα=,则sin的值为()A.- B.C.- D.6.如图,把边长为4的正方形ABCD沿对角线AC折起,当直线BD和平面ABC所成的角为时,三棱锥的体积为()A. B.C. D.7.某几何体的三视图如图所示,则该几何体的表面积为()A. B.C. D.8.已知向量,,那么()A.5 B.C.8 D.9.如图,在正方体中,分别为的中点,则异面直线和所成角的大小为A. B.C. D.10.已知函数在区间上是增函数,则的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知向量,,若,则的值为________.12.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.13.已知平面向量,,,,,则的值是______14.不等式的解集为__________.15.=_______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知定义域为R的函数是奇函数.(1)求a的值;(2)求不等式的解集.17.已知向量,1若

,共线,求x的值;2若,求x的值;3当时,求与夹角的余弦值18.已知集合,集合.(1)当时,求;(2)命题,命题,若q是p的必要条件,求实数a的取值范围.19.已知全集,,集合(1)求;(2)求20.已知函数,(1)求函数的最大值及取得最大值时的值;(2)若方程在上的解为,,求的值21.已知(1)作出函数的图象,并写出单调区间;(2)若函数有两个零点,求实数的取值范围

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】利用指数函数和对数函数的单调性比较a三个数与0、1的大小关系,由此可得出a、b、c大小关系.【详解】解析:由题,,,即有.故选:A.2、D【解析】由已知根据的不同取值,分别作出不同情况下的截面图形,利用数形结合思想能求出结果【详解】当时,如图,是四边形,故正确当时,如图,为等腰梯形,正确;当时,如图,由三角形与三角形相似可得,由三角形与三角形相似可得,,正确当时,如图是五边形,不正确;当时,如图是菱形,面积为,正确,正确的命题为,故选D【点睛】本题主要考查正方体的截面,意在考查空间想象能力,解题时要认真审题,注意数形结合思想的合理运用,是中档题3、C【解析】由在上单调递减可知,由方程恰好有两个不相等的实数解,可知,,又时,抛物线与直线相切,也符合题意,∴实数的取值范围是,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解4、C【解析】先求得时的值域,再根据题意,当时,值域最小需满足,分析整理,即可得结果.【详解】当,,所以当时,,因为的值域为R,所以当时,值域最小需满足所以,解得,故选:C【点睛】本题考查已知函数值域求参数问题,解题要点在于,根据时的值域,可得时的值域,结合一次函数的图像与性质,即可求得结果,考查分析理解,计算求值的能力,属基础题.5、C【解析】应用辅助角公式可得,再应用诱导公式求目标三角函数的值.【详解】由题设,,而.故选:C6、C【解析】取的中点为,连接,过作的垂线,垂足为,可以证明平面、平面,求出的面积后利用公式求出三棱锥的体积.【详解】取的中点为,连接,过作的垂线,垂足为.因为为等腰直角三角形,故,同理,而,故平面,而平面,故平面平面,因为平面平面,平面,故平面,故为直线BD和平面ABC所成的角,所以.在等腰直角形中,因为,,故,同理,故为等边三角形,故.故.故选:C.【点睛】思路点睛:线面角的构造,往往需要根据面面垂直来构建线面垂直,而后者来自线线垂直,注意对称的图形蕴含着垂直关系,另外三棱锥体积的计算,需选择合适的顶点和底面.7、C【解析】根据三视图,作出几何体的直观图,根据题中条件,逐一求解各个面的表面积,综合即可得答案.【详解】根据三视图,作出几何体的直观图,如图所示:由题意得矩形的面积,矩形的面积,矩形的面积,正方形、的面积,五边形的面积,所以该几何体的表面积为,故选:C8、B【解析】根据平面向量模的坐标运算公式,即可求出结果.【详解】因为向量,,所以.故选:B.9、D【解析】连DE,交AF于G,根据平面几何知识可得,于是,进而得.又在正方体中可得底面,于是可得,根据线面垂直的判定定理得到平面,于是,所以两直线所成角为【详解】如图,连DE,交AF于G在和中,根据正方体的性质可得,∴,∴,∴,∴又在正方体中可得底面,∵底面,∴,又,∴平面,∵平面,∴,∴异面直线和所成角的大小为故选D【点睛】求异面直线所成的角常采用“平移线段法”,将空间角的问题转化为平面问题处理,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角时通常放在三角形中利用解三角形的方法进行求解,有时也可通过线面间的垂直关系进行求解10、A【解析】根据二次函数的单调区间及增减性,可得到,求解即可.【详解】函数,开口向下,对称轴为函数在区间上是增函数,所以,解得,所以实数a的取值范围是.故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】因为,,,所以,解得,故答案为:12、【解析】结合正弦函数的性质确定参数值.【详解】由图可知,最小正周期,所以,所以.故答案为:.【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.13、【解析】根据向量垂直向量数量积等于,解得α·β=,再利用向量模的求法,将式子平方即可求解.【详解】由得,所以,所以所以.故答案为:14、【解析】由不等式,即,所以不等式的解集为.15、##【解析】利用对数的运算法则进行求解.【详解】.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)利用奇函数的必要条件,,求出,进而再验证此时为奇函数;(2),要用函数的单调性,将复合不等式转化,所以考虑分离常数,化简为,判断在是增函数,可得不等式,转化为求指数幂不等式,即可求解.【详解】(1)函数是奇函数,,,;(2),令,解得,化,在上增函数,且,所以在是增函数,等价于,,所以不等式的解集为.【点睛】本题考查函数的奇偶性求参数,要注意应用奇偶性的必要条件减少计算量,但要进行验证;考查函数的单调性应用及解不等式,考查计算、推理能力,属于中档题.17、(1);(2);(3)【解析】(1)根据题意,由向量平行的坐标公式可得,解可得的值,即可得答案;(2)若,则有,利用数量积的坐标运算列方程,解得的值即可;(3)根据题意,由的值可得的坐标,由向量的坐标计算公式可得和的值,结合,计算可得答案【详解】根据题意,向量,,若,则有,解可得若,则有,又由向量,,则有,即,解可得.根据题意,若,则有,,【点睛】本题主要考查两个向量共线、垂直的性质,两个向量坐标形式的运算,两个向量夹角公式的应用,属于中档题18、(1);(2)【解析】(1)根据集合交集的定义,结合一元二次不等式解法进行求解即可;(2)根据必要条件对应的集合关系进行求解即可;【详解】解:由题意可知,;(1)当时,,所以(2)是的必要条件,,.19、(1);(2).【解析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,,集合,故.【小问2详解】集合,故或,故.20、(1)当时,函数取得最大值为;(2).【解析】(1)利用同角三角函数的平方关系化简,再利用换元法即可求最值以及取得最值时的值;(2)求出函数的对称轴,得到和的关系,利用诱导公式化简可得答案.【详解】(1),令,可得,对称轴为,开口向下,所以在上单调递增,所以当,即,时,,所以当时,函数取得最大值为;(2)令,可得,当时,是的对称轴,因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论