2024届武汉市重点中学数学高一上期末统考试题含解析_第1页
2024届武汉市重点中学数学高一上期末统考试题含解析_第2页
2024届武汉市重点中学数学高一上期末统考试题含解析_第3页
2024届武汉市重点中学数学高一上期末统考试题含解析_第4页
2024届武汉市重点中学数学高一上期末统考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届武汉市重点中学数学高一上期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.的定义域为()A. B.C. D.2.命题“”为真命题的一个充分不必要条件是()A. B.C. D.3.关于x的一元二次不等式对于一切实数x都成立,则实数k满足()A. B.C. D.4.已知角的终边过点,则等于()A.2 B.C. D.5.已知函数,则下列说法不正确的是A.的最小正周期是 B.在上单调递增C.是奇函数 D.的对称中心是6.在四面体的四个面中,是直角三角形的至多有A.0个 B.2个C.3个 D.4个7.在平行四边形中,设,,,,下列式子中不正确是()A. B.C. D.8.已知函数在上的值域为R,则a的取值范围是A. B.C. D.9.过点(5,2),且在y轴上的截距是在x轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.x-2y-1=0或2x-5y=0C.x-2y-1=0 D.2x+y-12=0或2x-5y=010.函数的一个零点所在的区间是()A. B.C. D.11.始边是x轴正半轴,则其终边位于第()象限A.一 B.二C.三 D.四12.当时,函数和的图像只可能是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.给出下列命题:①存在实数,使;②函数是偶函数;③若是第一象限角,且,则;④是函数的一条对称轴方程以上命题是真命题的是_______(填写序号)14.已知弧长为cm2的弧所对的圆心角为,则这条弧所在的扇形面积为_____cm215.已知函数,则的值等于______16.函数的最小值为________三、解答题(本大题共6小题,共70分)17.已知函数是指数函数(1)求的解析式;(2)若,求的取值范围18.已知函数.(1)判断函数的奇偶性,并说明理由;(2)若实数满足,求的值.19.已知函数(1)判断函数在上的单调性,并用定义法证明你的结论;(2)若,求函数的最大值和最小值.20.已知函数,其中.(1)若对任意实数,恒有,求的取值范围;(2)是否存在实数,使得且?若存在,则求的取值范围;若不存在,则加以证明.21.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.22.已知n为正整数,集合Mn=x1,x2,⋅⋅⋅,xnx(1)当n=3时,设α=0,1,0,β=1,0,0,写出α-(2)若集合S满足S⊆M3,且∀α,β∈S,dα,β=2,求集合(3)若α,β∈Mn,且dα,β=2,任取γ∈

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由对数函数的性质及分式的性质解不等式即可得解.【详解】由题意得,解得,所以的定义域为.故选:C.【点睛】本题考查了具体函数定义域的求解,属于基础题.2、D【解析】先确定“”为真命题时的范围,进而找到对应选项.【详解】“”为真命题,可得,因为,故选:D.3、C【解析】只需要满足条件即可.【详解】由题意,解得.故选:C.4、B【解析】由正切函数的定义计算【详解】由题意故选:B5、A【解析】对进行研究,求出其最小正周期,单调区间,奇偶性和对称中心,从而得到答案.【详解】,最小正周期为;单调增区间为,即,故时,在上单调递增;定义域关于原点对称,,故为奇函数;对称中心横坐标为,即,所以对称中心为【点睛】本题考查了正切型函数的最小正周期,单调区间,奇偶性和对称中心,属于简单题.6、D【解析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解【详解】如图,PA⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形故选D【点睛】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.7、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.8、A【解析】利用分段函数,通过一次函数以及指数函数判断求解即可【详解】解:函数在上的值域为R,当函数的值域不可能是R,可得,解得:故选A【点睛】本题考查分段函数的应用,函数的最值的求法,属于基础题.9、D【解析】根据直线是否过原点进行分类讨论,结合截距式求得直线方程.【详解】当直线过原点时,直线方程为,即.当直线不过原点时,设直线方程为,代入得,所以直线方程为.故选:D10、B【解析】先求出根据零点存在性定理得解.【详解】由题得,,所以所以函数一个零点所在的区间是.故选B【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.11、B【解析】将转化为内的角,即可判断.【详解】,所以的终边和的终边相同,即落在第二象限.故选:B12、A【解析】由一次函数的图像判断出a、b的符号,结合指数函数的图像一一进行判断可得答案.【详解】解:A项,由一次函数的图像可知此时函数为减函数,故A项正确;B项,由一次函数的图像可知此时函数为增函数,故B项错误;C项,由一次函数的图像可知,此时函数为的直线,故C项错误;D项,由一次函数的图像可知,,此时函数为增函数,故D项错误;故选A.【点睛】本题主要考查指数函数的图像特征,相对简单,由直线得出a、b的范围对指数函数进行判断是解题的关键.二、填空题(本大题共4小题,共20分)13、②④【解析】根据三角函数的性质,依次分析各选项即可得答案.【详解】解:①因为,故不存在实数,使得成立,错误;②函数,由于是偶函数,故是偶函数,正确;③若,均为第一象限角,显然,故错误;④当时,,由于是函数的一条对称轴,故是函数的一条对称轴方程,正确.故正确的命题是:②④故答案为:②④14、【解析】先求出半径,再用扇形面积公式求解即可.【详解】由已知半径为,则这条弧所在的扇形面积为.故答案为:.15、2【解析】由分段函数可得,从而可得出答案.【详解】解:由,得.故答案为:2.16、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:三、解答题(本大题共6小题,共70分)17、(1)(2)【解析】(1)由指数函数定义可直接构造方程组求得,进而得到所求解析式;(2)将不等式化为,根据对数函数单调性和定义域要求可构造不等式组求得结果.【小问1详解】为指数函数,,解得:,.【小问2详解】由(1)知:,,解得:,的取值范围为.18、(1)偶函数,理由见详解;(2)或.【解析】(1)根据函数定义域,以及的关系,即可判断函数奇偶性;(2)根据的单调性以及对数运算,即可求得参数的值.【小问1详解】偶函数,理由如下:因为,其定义域为,关于原点对称;又,故是偶函数.【小问2详解】在单调递增,在单调递减,证明如下:设,故,因为,故,则,又,故,则,故,则故在单调递增,又为偶函数,故在单调递减;因为,又在单调递增,在单调递减,故或.19、(1)减函数,证明见解析(2),【解析】(1)根据定义法证明函数单调性即可求解;(2)根据(1)中的单调性求解最值即可.【小问1详解】任取,,且则-因为,所以,所以,即,所以在区间上是减函数【小问2详解】因为函数在区间上是减函数,所以,.20、(1);(2)存在,.【解析】(1)首先求出在上的最大值,问题转化为对任意成立,然后化简不等式,参变分离构造即可.(2)分a>0和a<0两种情况讨论,去掉绝对值符号,转化为解不等式的问题.【小问1详解】,,,∴,∴原问题对任意成立,即对任意成立,即对任意成立,∴.故a的范围是:.【小问2详解】①,,∵,∴,∴不等式变为,∴;(2),,∵,∴此时无解.综上所述,存在满足题意.21、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解】(1)函数f(x)cos(2x)中,它的最小正周期为Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调增区间为[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调减区间为[kπ,kπ],k∈Z;(2)x∈[,]时,2x≤π,所以2x;令2x,解得x,此时f(x)取得最小值为f()()=﹣1;令2x0,解得x,此时f(x)取得最大值为f()1【点睛】本题考查了三角函数的图象与性质的应用问题,熟记单调区间是关键,是基础题22、(1)α-β=1,1,0(2)最大值是4,此时S=0,0,0,(3)2【解析】(1)根据定义直接求解即可;(2)根据定义,结合反证法进行求解即可;(3)根据定义,结合绝对值的性质进行证明即可.【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论